高超声速流动特征分析

  • 吴子牛
展开
  • 清华大学

收稿日期: 2014-12-01

  修回日期: 2014-12-02

  网络出版日期: 2014-12-04

Aerodynamic Environments for Hypersonic Flight

  • WU Zi-Niu
Expand

Received date: 2014-12-01

  Revised date: 2014-12-02

  Online published: 2014-12-04

摘要

在非流线型构件或突起物的扰动效应、高马赫数和低雷诺数极限效应、低湍流度环境效应和由激波或摩擦导致的气动加热效应等四个方面影响下,未来高超声速飞行器涉及的流动主要表现出这样的特点:(1)典型流动结构强度高、尺度大,如强激波和厚边界层,(2)局部流动结构数量多,(3)激波、膨胀波和边界层结构之间相互干扰十分严重,(4)转捩、压力脉动和一些流动结构对细微因素非常敏感,(5)压力、摩擦应力和热流峰值现象普遍,(6)升阻比屏障难以突破,(7)流场同时依赖大量无量纲参数和有量纲参数,导致实验模拟难道大。本文在回顾传统高超声速流动主要流动现象的基础上,对上述七个方面涉及的典型流动现象基础研究现状、问题本质和因果关系进行综合描述,最终讨论如何更有效地面对基础研究和工程实际问题。 该文既可以为解决典型流动现象中尚未解决的基础研究提供指导,也为如何合理地利用有限的已知知识解决工程应用问题提供指导。

本文引用格式

吴子牛 . 高超声速流动特征分析[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2014.0228

Abstract

Modern hypersonic vehicles have local non-streamlined obstacles, operate at lower turbulent environment with high Mach number and lower Reynolds number, and cruise in air subjected to shock and friction heating. Due to these factors, hypersonic flows are full of strong local flow structures such as strong shock waves and thick boundary layers, with severe interactions between them. Aerodynamic heating is strengthened locally by such interactions. A number of critical phenomena such as transition and pressure perturbations are quite sensitive and the competitive influences of wave and frictional drags make the lift to drag ratio to have a barrier. All these are not simply dependent on the Mach number and Reynolds number, but also dependent on many dimensional parameters, so that modelling by ground facilities is difficult and a combined study by theory, numerical study and experimental measurement is necessary to solve an engineering problem. In this paper, we give an overview on the start-of-art knowledge of the most important and critical physics of hypersonic flow and discuss methods to solve hypersonic flow problems in the most possible effective way. This review and discussion are hopefully useful for further fundamental studies and for bringing a bridge between fundamental study and engineering applications.

参考文献


【1】Oswatitsch, K.: Ahnlichkeitsgesetz für Hyperschallstromung. ZAMP, vol. II, pp. 249–264 (1951). (Similarity Laws for Hypersonic Flow. Royal Institute of Technology. Stockholm. Sweden KTH-AERO TN 16 (1950))
【2】Kliche D., Mundt CH, Hirschel EH, The hypersonic Mach number independence principle in the case of viscous flow, Shock Waves (2011) 21:307–314
【3】Anderson JD, Hypersonic and high temperature gas dynamics. McGraw-Hill Book Company, New York (1989).
【4】Bertin JJ, Cummings RM. Fifty years of hypersonics: where we’ve been, where we’re going. Progress in Aerospace Sciences 39 (6-7), 511-536. (2003)
【5】Bertin JJ, Cummings RM. Critical hypersonic aerothermodynamic phenomena. Annual Review of Fluid Mechanics 38, 129-157. (2006)
【6】 Reshotko E., Tumin A. The blunt body paradox — a case for transient growth, Laminar-Turbulent Transition IUTAM Symposia 2000, pp 403-408.
【7】Hirschel EH, Weiland C, Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles, Springer-Verlag Berlin Heidelberg, 2009.
【8】Kuchemann D. The Aerodynamic Design of Aircraft: A Detailed Introduction to the Current Aerodynamic Knowledge and Practical Guide to the Solution of Aircraft Design Problems. Oxford: Pergamon Press, 1978.
【9】Corda S, Anderson J. Viscous optimized waveriders designed from axisymmetric flow fields. AIAA Paper, 1988, AIAA-88-0369
【10】Stollery J L. Viscous interaction effects and re-entry aerothermodynamics:Theory and experimental results. Aerodynamic problems of hypersonic vehicles. AGARD Lecture Ser, 1972, 42: 191–1028
【11】Nonweiller , T. R. F. (1959) Aerodynamic Problems of Manned Space Vehicles. Journal of the Royal Aeronautical Society, 63, 521-528.
【12】Bushnell, DA, Shock wave drag reduction, Annual Review of Fluid Mechanics 36 pp. 81-96, 2004
【13】Xu YZ, Xu ZQ, Li SG, Li J, Bai CY, Wu ZN, A hypersonic lift mechanism with decoupled lift and drag surfaces,Science China Physics, Mechanics and Astronomy, 2013, Volume 56, Issue 5, pp 981-988
【14】Lockwood MK, Petley DH, Martin JG, Hunt JL, Airbreathing hypersonic vehicle design and analysis methods and interactions, Progress in Aerospace Sciences, 35, pp.1-32, 1999.
【15】Brandeis J, Gill J, Experimental investigation of side-jet steering for supersonic and hypersonic missiles, Journal of Spacecraft and Rockets, 33(3), 346-352, (1996)
【16】Gulhan A, Schutte G, Stahl B, Experimental study on aerothermal heating caused by jet-hypersonic crossflow interaction, Journal of Spacecraft and Rockets, 45(5), 891-899, (2008)
【17】童秉纲,孔祥言,邓国华. 气体动力学. 高等教育出版社,1989.
【18】Josyula E, Pinney M, Blake WB, Applications of a counterflow drag reduction technique in high speed systems, AIAA 2001-2437, (2001)
【19】Bracken RM, Hartley CS, Myrabo LN, Experimental and computational parametric drag study of an ‘airspike’ in hypersonic flow, AIAA 2002-3784, (2002)
【20】 Ben-Dor, G. 2007, Shock Wave Reflection Phenomena. Springer.
【21】Ben-Dor, G., Ivanov, M., Vasiliev, E. I. & Elperin, T. 2002 Hysteresis processes in the regular reflection $ Mach reflection transition in steady flows. Prog. Aerospace Sci. 38, 347–387.
【22】Li SG, Gao B, Wu ZN, Time history of regular to Mach reflection transition in steady supersonic flow, J. Fluid Mech. (2011), vol. 682, pp. 160–184.
【23】Edney, B., Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock, Aeronautical Research Inst. of Sweden, FAA Rept. 115, 1968
【24】Hans FD, Keyes JW, Shock interference heating in hypersonic flows, AIAA Journal, 10(11), 1441-1447,(1972)
【25】Hans FD, Keyes JW, Shock interference heating in hypersonic flows, AIAA Journal, 10(11), 1441-1447,(1972)
【26】George E. K. A method for predicting shock shapes and pressure distributions for a wide variety of blunt bodies at zero angle of attack. NASA TN D4539,1968
【27】Tan, L. H., Ren, Y. X. & Wu, Z. N. 2006 Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J. Fluid Mech. 546, 341-362.
【28】Maslov AA, Hypersonic boundary layer transition and control- Springer, 2010
【29】Schneider SP Flight data for boundary-layer transition at hypersonic and supersonic speeds, Journal of Spacecraft and Rockets, 36, 8-20, 1999.
【30】 Malik, M. R., Prediction and control of transition in supersonic and hypersonic boundary layers, AIAA Journal, Vol. 27, No. 11, pp.1487–1493, 1989.
【31】Hu RF, Wu ZN, Wu Z, Wang XX, Tian ZW, Aerodynamic map for soft and hard hypersonic level flight in near space. Acta Mechanica Sinica 25(4), 571-575. (2009)
【32】Babinsky H, Harvey JK. Shock Wave–Boundary-Layer Interactions. Cambridge University Press, New York (2011)
【33】Gaitonde DV Progress in ShockWave/Boundary Layer Interactions, AIAA 2013-2607
【34】Panaras AG Review of the physics of swept-shock/boundary layer interactions, Prog. Aerospace Sci Vol. 32, pp. 173-244, 1996
【35】Dolling DS, Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J, 29,1517-1531, (2001).
【36】Clemens NT , Narayanaswamy V, Low -frequency unsteadiness of shock wave/turbulent boundary layer interactions, Annu. Rev. Fluid Mech. 2014. 46:469–92
【37】Zheltovodov AA Shock waves/turbulent boundary-layer interactions - Fundamental studies and applications, AIAA Paper 96-1977
【38】Délery J, Dussauge JP, Some physical aspects of shock wave/boundary layer interactions, Shock Waves (2009) 19:453–468
【39】李素循 激波与边界层主导的复杂流动.科学出版社.(2007)
【40】Humble RA, Scarano F, van Oudheusden BW, Unsteady aspects of an incident shock wave/turbulent boundary layer interaction, Journal of Fluid Mechanics, 635, 47-74,(2009).
【41】陈伟芳,张志成,石于中,王全利,吴其芬,再入体表面脉动压力环境的预测,国防科技大学学报,23(6),,(2001)
【42】Plotkin KJ, Roberson JE, Prediction of space shuttle fluctuating pressure environments, including rocket plume effects. NASA N73-29885, NASA-CR-124347, ( 1973)
【43】 Yu KH, Trouve A, Daily JW, Low frequency pressure oscillations in a model ramjet combustor, Journal of Fluid Mechanics, 232, 47-72, (1991)
【44】 Rossiter JE. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronaut. Res. Counc. Rep. Memo. (1964)
【45】王晓欣, 胡锐锋, 吴子牛. 临近空间特殊气动问题分析.临近空间科学与工程, ,1(1):34-42(2009)
【46】Gao B,Wu ZN 2010 A study of the flow structure fro Mach reflection in steady supersonic flow. J. Fluid Mech. 656, 29–50.
【47】 van Driest, ER, The Problem of Aerodynamic Heating, Aeronautical Engineering Review, vol. 15, no. 10, Oct. 1956, pp.26-41
【48】Fay, J. A., and Riddell, F. R., 1958, “Theory of Stagnation Point Heat Transfer in Dissociated Air”, J. of Aeronautical Sciences, Vol. 25, pp. 73-85.
【49】 Hung, F.T. and Barnett, D.O.: Shock wave/boundary layer interference heating analysis.AIAA Paper 72-0237, 1973
【50】Belouaggadia, N.Olivier, H. Brun, R. Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. Journal of Fluid Mechanics 607: 167-197, JUL 25 2008
【51】Belouaggadia, N. Takayama, K. Brun, R. Olivier, H. Shock layers over blunt and conical bodies in hypersonic non-equilibrium flow. SHOCK WAVES, 20(4):333-338. AUG 2010.
【52】徐珊姝,过渡区飞行器流场的数值模拟和计算方法研究,清华大学博士学位论文,2008.
【53】 Hu RF, Wu ZN, Wu Z, Wang XX, Tian ZW, Aerodynamic map for soft and hard hypersonic level flight in near space, Acta Mechanica Sinica, 25(4), 571-575
【54】王晓欣, 胡锐锋, 吴子牛. 临近空间特殊气动问题分析,临近空间科学与工程, 1(1):34-42(2009)
【55】ZN Wu, YZ Xu, WB Wang,RF Hu, Review of shock wave detection method in CFD post-processing, Chinese Journal of Aeronautics, 26, 501-513, 2013
【56】Dalle DJ, Fotia ML, and Driscoll JF,Reduced-order modeling of two-dimensional supersonic flows with applications to scramjet inlets, Journal of Propulsion and Power, 26, 545-555, 2010
【57】 Zhang YS, Bi WT, Hussain F , She ZS,A generalized Reynolds analogy for compressible wall-bounded turbulent flows, Journal of Fluid Mechanics 739 392 -420,2014
【58】Zhang YS , Bi WT, Hussain F , Li, XL, She, ZS, Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers, Physical Review Letters, 109, 054502 (2012).
【59】Fu S, Wang L, RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory, Progress in Aerospace Sciences, 58 , 36-59, 2013
【60】Jiang, Z; Xiao, ZL; Shi, YP; Chen, SY, Constrained large-eddy simulation of wall-bounded compressible turbulent flows, Physics of Fluids, 25, 106102 (2013), DOI: 10.1063/1.4824393
【61】胡锐锋,吴子牛,曲溪,王翔,空间碎片再入烧蚀预测与地面安全评估软件,航空学报,32,390-399,2011
【62】 Wang, ZH, Bao L, Tong BG, Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows, Physics of Fluids, 22 , 126103( 2010).
【63】Wu Z N. Prediction of the size distribution of secondary ejected
droplets by crown splashing of droplets impinging on a solid wall.
Probabilist Eng Mech, 18: 241–249(2003).
【64】Wang WB , Wu ZN , Wang CF, Hu RF, Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model, SCIENCE CHINA Physics, Mechanics & Astronomy, Vol. 56 (11): 2143–2150 (2013)
【65】Wu, ZN, The number e1/2 is the ratio between the time of maximum value and the time of maximum growth rate for restricted growth phenomena? arXiv 1401.2400, http://arxiv.org/abs/1401.2400.
【66】Li, J, Wu, ZN, A note on restricted growth process with competitive production and dissipation mechanisms", submitted to Probabilistic Engineering Mechanics (2014).
【67】 K.T.Trinh, On the Karman constant, arxiv.org/pdf/1007.0605
【68】 Sreenivasan K R. On the universality of the Kolmogorov constant , Phys. Fluids 7 (ll), 2778-2784 (1995).
文章导航

/