基于时间谱方法的飞行器动导数高效计算技术
收稿日期: 2014-07-10
修回日期: 2014-08-14
网络出版日期: 2014-12-01
基金资助
国家自然科学基金 (11372040)
A high efficient method for computing dynamic derivatives of aircraft based on time spectral method
Received date: 2014-07-10
Revised date: 2014-08-14
Online published: 2014-12-01
Supported by
National Natural Science Foundation of China (11372040)
针对动导数计算工程应用亟需的高效、高精度发展目标,提出求解非定常雷诺平均Navier-Stokes(RANS)方程的时间谱方法(TSM)的全隐格式,以改善采样点数较大时的数值稳定性,并将TSM离散推广到Menter剪切应力输运(SST)湍流模型,以提高TSM的工程实用性。将TSM应用于数值模拟NACA0015强迫振荡,所得计算结果与试验数据和双时间步(DTS)方法的计算结果均能较好地吻合,验证了TSM对周期运动的模拟能力。采用发展的TSM对高超声速HBS标模和超声速Finner标模进行计算,并分析研究攻角和马赫数对动导数的影响规律。结果表明:对于周期运动,具有与DTS方法相当的计算精度,但TSM的计算效率会随来流马赫数的增大而提高,其效率优势在高超声速范围时可达一个量级以上。
谢立军 , 杨云军 , 刘周 , 周伟江 . 基于时间谱方法的飞行器动导数高效计算技术[J]. 航空学报, 2015 , 36(6) : 2016 -2026 . DOI: 10.7527/S1000-6893.2014.0316
The engineering application requires the solver of periodic unsteady flows to be of high efficiency and precision. Based on solving the Reynolds-averaged Navier-Stokes (RANS) equations, a fully implicit version of the time spectral method (TSM) is established and the stability problem that occurs as the sampling number grows is improved. The Menter shear-stress transport (SST) turbulence model is discretized with the TSM, which makes the TSM more applicable to practical engineering problems. The TSM is applied to simulate the forced oscillation of NACA0015. The calculated results are in good agreement with the experimental data and the results of the dual time stepping (DTS) method, validating the ability of the TSM to simulate the periodic motion. The hypersonic HBS and the supersonic Finner are taken as typical examples of computing dynamic derivatives using the TSM. Influences of the angle of attack and Mach number on dynamic derivatives are analyzed. Results show that the TSM can acquire the same order of accuracy compared with the DTS method. But the relative efficiency of the TSM improves as the Mach number increases. The efficiency advantage in hypersonic range could be up to an order of magnitude.
[1] Hall K C, Thomas J P, Clark W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5): 879-886.
[2] McMullen M, Jameson A, Alonso J J. Acceleration of convergence to a periodic steady state in turbomachinery flows, AIAA-2001-0152[R]. Reston: AIAA, 2001.
[3] McMullen M, Jameson A, Alonso J J. Application of a nonlinear frequency domain solver to the Euler and Navier-Stokes equations, AIAA-2002-0120[R]. Reston: AIAA, 2002.
[4] Murman S M. A reduced-frequency approach for calculating dynamic derivatives, AIAA-2005-0840[R]. Reston: AIAA, 2005.
[5] Gopinath A K, Jameson A. Time spectral method for periodic unsteady computations over two- and three-dimensional bodies, AIAA-2005-1220[R]. Reston: AIAA, 2005.
[6] Gopinath A K, Jameson A. Application of the time spectral method to periodic unsteady vortex shedding, AIAA-2006-0449[R]. Reston: AIAA, 2006.
[7] Hall K C, Ekici K. Multistage coupling for unsteady flows in turboma chinery[J]. AIAA Journal, 2005, 43(3): 624-632.
[8] Thomas J P, Dowell E H, Hall K C, et al. Further inves-tigation of modeling limit cycle oscillation behavior of the F-16 fighter using harmonic balance approach, AIAA- 2005-1917[R]. Reston: AIAA, 2005.
[9] Choi S, Potsdam M, Lee K, et al. Helicopter rotor design using a time-spectral and adjoint-based method, AIAA-2008-5810[R]. Reston: AIAA, 2008.
[10] Yang X Q, Cheng S K, Yang A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797 (in Chinese). 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4): 787-797.
[11] Chen Q, Chen J Q, Yuan X X, et al. Application of a harmonic balance method in rapid predictions of dynamic stability derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 183-190 (in Chinese). 陈琦, 陈坚强, 袁先旭, 等. 谐波平衡法在动导数快速预测中的应用研究[J]. 力学学报, 2014, 46(2): 183-190.
[12] Sicot F, Puigt G, Montagnac M. Block-Jacobi implicit algorithms for the time spectral method[J]. AIAA Journal, 2008, 46(12): 3080-3089.
[13] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(1): 357-372.
[14] Venkatakrishnan V. On the accuracy of limiters and con-vergence to steady state solutions, AIAA-1993-0880[R]. Reston: AIAA, 1993.
[15] Spalart P R. Trends in turbulence treatments, AIAA- 2000-2306[R]. Reston: AIAA, 2000.
[16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Liu Z, Yang Y J, Zhou W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES Method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380 (in Chinese). 刘周, 杨云军, 周伟江, 等. 基于混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.
[18] Piziali R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall, NASA-TM-4632[R].Washington, D.C.: NASA, 1994.
[19] East R A, Hutt G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft, 1988, 25(3): 225-233.
[20] Uselton J C, Uselton B L. A look at the validity of the small-amplitude oscillation dynamic-stability measurement technique, AIAA-1975-0211[R]. Reston: AIAA, 1975.
[21] Shantz I, Graves R T. Dynamic and static stability measurements of the basic Finner at supersonic speeds, AD245560[R]. Washington, D.C.: U.S. Naval Ordnance Laboratory, 1960.
/
〈 | 〉 |