基于网格状ITO薄膜的航天器太阳电池阵静电放电防护
收稿日期: 2014-10-13
修回日期: 2014-11-04
网络出版日期: 2014-11-24
基金资助
国家“973”计划(613211)
Electrostatic discharge protection of spacecraft solar cell array based on meshed ITO film
Received date: 2014-10-13
Revised date: 2014-11-04
Online published: 2014-11-24
Supported by
National Basic Research Program of China (613211)
表面蒸镀ITO薄膜是解决航天器太阳电池阵充放电问题的有效途径。薄膜会降低可见光透射率并增加航天器载荷,为此,提出一种网格状ITO薄膜解决方案。通过光学性能测试和电子辐照材料表面起电实验研究,分别给出了可见光平均透射率与薄膜覆盖率、表面电位与薄膜覆盖率的关系表达式,总结了平均透射率和表面电位随薄膜覆盖率的变化规律。结果表明,在380~780 nm可见光范围内,薄膜覆盖率每增加10%,平均透射率下降约0.7%;薄膜覆盖率为10%的样品表面电位比无薄膜覆盖降低54%;在薄膜覆盖率为10%~100%范围内,表面电位随覆盖率增大近似呈线性下降,薄膜覆盖率每增加10%,表面电位降低约9%。该研究结论可为航天器太阳电池阵静电防护研究提供有益参考。
刘浩 , 刘尚合 , 苏银涛 , 孙永卫 , 曹鹤飞 . 基于网格状ITO薄膜的航天器太阳电池阵静电放电防护[J]. 航空学报, 2015 , 36(10) : 3494 -3500 . DOI: 10.7527/S1000-6893.2014.0320
It is an effective way to solve the charging and discharging problem of the spacecraft solar cell array by evaporating ITO (Indium Tin Oxide) films on the surface. The visible light transmittance of solar cells will be reduced and the spacecraft load will be increased because of the films. Therefore, a solution of meshed ITO film is proposed in this paper. The performance of optics and surface charging by electron irradiating is tested. The expressions of average transmittance and surface potential at different film coverage ratios are given and the visible light transmittance and surface potential variation with film coverage ratio is summed up. The results show that the average transmittance decreases by about 0.7% with each additional coverage ratio of 10%, in the range of 380-780 nm visible light; the surface potential of the sample which is at a coverage ratio of 10 is lower than that is uncovered by 54%; in the range of 10% to 100% coverage ratio, the surface potential is decreased approximately linearly with increasing coverage ratio; the surface potential is reduced by about 9% with each additional coverage ratio of 10%. The conclusions may provide a useful reference for the research of spacecraft solar cell arrays electrostatic protection.
[1] Abdel-Aziz Y A, Abd EI-Hameed A M. Ground-based simulation for the effects of space plasma on spacecraft[J]. Advances in Space Research, 2013, 51(1): 133-142.
[2] Cho M. Dielectric charging processes and arcing rates of high-voltage solar arrays[J]. Journal of Spacecraft and Rockets, 1991, 28(6): 698-701.
[3] Wright K H, Schneider T A, Vaughn J A, et al. Electrostatic discharge testing of multifunction solar array coupons after combined space environmental exposures[J]. IEEE Transactions on Plasma Science, 2012, 40(2): 334-344.
[4] Jia R J, Tong J Y. A study on arc discharge of HVSA in LEO plasma environment[J]. Spacecraft Environment Engineering, 2006, 23(3): 150-154 (in Chinese). 贾瑞金, 童靖宇. 低地球轨道等离子体环境引起的高压太阳电池阵电弧放电现象的研究[J]. 航天器环境工程, 2006, 23(3): 150-154.
[5] Li K, Wang L, Qin X G, et al. Charging and discharging effects on high-voltage solar array in GEO[J]. Spacecraft Environment Engineering, 2008, 25(2): 125-130 (in Chinese). 李凯, 王立, 秦晓刚, 等. 地球同步轨道高压太阳电池阵充放电效应研究[J]. 航天器环境工程, 2008, 25(2): 125-130.
[6] Li K, Xie E Q, Lin H F, et al. Experimental study on high-voltage and high-power solar array secondary discharge[J]. Chinese Journal of Physics, 2005, 54(5): 2162-2166 (in Chinese). 李凯, 谢二庆, 林洪峰, 等. 空间太阳阵二次放电的模拟实验研究[J]. 物理学报, 2005, 54(5): 2162-2166.
[7] Xue M. The study of ESD effects and defending technology about high-voltage GaAs solar array[D]. Tianjin: Tianjin University, 2007 (in Chinese). 薛梅. 高压砷化镓太阳阵ESD效应及防护技术研究[D]. 天津: 天津大学, 2007.
[8] Cui X Y, Sun Y Z, Wang Y Z, et al. An estimative examination to the hedge electrostatic discharge of high voltage and high power and high power solar array[J]. Chinese Journal of Power Sources, 2004, 28(10): 644-648 (in Chinese). 崔新宇, 孙彦铮, 王远征, 等. 高压大功率太阳电池阵防静电措施评价试验[J]. 电源技术, 2004, 28(10): 644-648.
[9] Li K, Xie E Q, Wang L, et al. The application study on RTV protection techniques from secondary discharge on space high-voltage solar array[J]. Journal of Functional Materials, 2006, 37(11): 1739-1742 (in Chinese). 李凯, 谢二庆, 王立, 等. RTV胶在空间高压阵二次放电防护技术中的应用研究[J]. 功能材料, 2006, 37(11): 1739-1742.
[10] Xu B, Yuan Q Y, Wu Z C. Protection against electrostatic charge of spacecraft material in low pressure environment developed through ground simulation[J]. High Voltage Engineering, 39(12): 2894-2898.
[11] Yang Q, Xue P Y. Statistical data and reliability analysis of on-orbit anomalies and failures of satellite solar array[J]. Spacecraft Environment Engineering, 2013, 30(5): 555-560 (in Chinese). 杨倩, 薛培元. 卫星太阳电池阵在轨故障统计及分析[J]. 航天器环境工程, 2013, 30(5): 555-560.
[12] Jing Q. Space environment effects and protects for satellite solar array[J]. Chinese Journal of Power Sources, 2008, 32(11): 787-789 (in Chinese). 井琦. 太阳电池阵受空间环境的影响及防护[J]. 电源技术, 2008, 32(11): 787-789.
[13] Zhao Y, Liu S Z, Jin H W. Controlling techniques of electrostatic cleanliness in design of solar arrays for electromagnetism survey satellite[J]. Chinese Journal of Power Sources, 2014, 38(2): 276-278 (in Chinese). 赵颖, 刘松喆, 金海雯. 电磁监测卫星太阳电池阵表面等电位控制[J]. 电源技术, 2014, 38(2): 276-278.
[14] Yin J, Yang D S, Zhang S, et al. Laminated composite plate and shell elements based on combination method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 86-96 (in Chinese). 尹进, 杨东生, 张盛, 等. 几种基于组合方法的复合材料层合板壳单元[J]. 航空学报, 2013, 34(1): 86-96.
[15] Jiang Z R. Fabrication techniques and development of ITO transparent and conductive thin films[J]. Development and Application of Materials, 2010, 25(4): 68-72 (in Chinese). 江自然. ITO透明导电薄膜的制备方法及研究进展[J]. 材料开发与应用, 2010, 25(4): 68-72.
[16] Wang W W, Wang T M. Effects of atomic oxygen irradiation on transparent conductive oxide thin films[J]. Chinese Journal of Aeronautics, 2007, 20(9): 464-468.
[17] Wei J L, Jia Y F, Xie S G, et al. Complexity assessm-ent method on electromagnetic environment for avionic systems[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 487-496 (in Chinese). 魏嘉利, 贾云峰, 谢树果, 等. 航空电子系统电磁环境复杂度量化评估方法[J]. 航空学报, 2014, 35(2): 487-496.
[18] Zhao Y Z, Li L, Xu M, et al. Preparation and irradiation resistant properties' research of antistatic discharge films[J]. Vacuum & Cryogenics, 2008, 14(4): 215-218 (in Chinese). 赵印中, 李林, 许旻, 等. 空间防静电薄膜的制备及耐辐照性能研究[J]. 真空与低温, 2008, 14(4): 215-218.
[19] Zhang Q F, Gu J H, Guo X J, et al. Photoelectrical properties and microstructure of ITO films prepared by electron beam evaporation[J]. Vacuum, 2008, 45(3): 55-58 (in Chinese). 张庆丰, 谷锦华, 郭学军, 等. 电子束蒸发技术制备 ITO 薄膜的光电特性和微结构研究[J]. 真空, 2008, 45(3): 55-58.
[20] Zhang L, Liu W L, Duan Y X. Experimental design of preparation, lithography and measurement for ITO thin film[J]. Experiment Science and Technology, 2013, 11(6): 237-239 (in Chinese). 张磊, 刘文龙, 段宇星. ITO 薄膜的制备、光刻及性能测试实验设计[J]. 实验科学与技术, 2013, 11(6): 237-239.
[21] Lin X P, Qiang Y H, Xiao Y P, et al. Review of thin film solar cells[J]. Semiconductor Technology, 2012, 37(2): 96-104 (in Chinese). 蔺旭鹏, 强颖怀, 肖裕鹏, 等. 薄膜太阳电池研究综述[J]. 半导体技术, 2012, 37(2): 96-104.
/
〈 | 〉 |