喷射吸滤成型法制备碳纳米纸及其应变/温度传感特性
收稿日期: 2014-09-11
修回日期: 2014-10-30
网络出版日期: 2014-11-19
基金资助
国防十二五基础科研项目 (A352001106); 航空科学基金 (2013ZA54012); 辽宁省教育厅项目 (L2013074)
Fabrication of carbon nanotube Buckypaper by spray-vacuum filtration method and its strain and temperature sensing properties
Received date: 2014-09-11
Revised date: 2014-10-30
Online published: 2014-11-19
Supported by
Defense Industrial Technology Development Program of China (A35201106); Aeronautical Science Foundation of China (2013ZA54012); Program of the Education Department of Liaoning Province (L2013074)
碳纳米纸可作为应变传感器监测结构应变损伤,同时还可作为温度传感器监测环境温度变化。将多壁碳纳米管单分散后,采用喷射吸滤法制备碳纳米纸,利用场发射扫描电子显微镜和氮气吸附法表征碳纳米纸微观形貌及平均孔径。碳纳米纸的应变传感和温度传感实验表明碳纳米纸对应变灵敏度较高,灵敏度系数分别为10.21(0~39 000 με)和524.79(39 000~55 000 με);碳纳米纸经退火处理后,升温过程电阻温度系数分别为-6.57%/℃(20~100 ℃)和-3.25%/℃(100~200 ℃),降温过程电阻温度系数分别为-5.79%/℃(20~100 ℃)和-2.88%/℃(100~200 ℃),具有较好的温度传感可逆性和重复性。
卢少微 , 冯春林 , 聂鹏 , 王晓强 , 熊需海 , 吕伟 . 喷射吸滤成型法制备碳纳米纸及其应变/温度传感特性[J]. 航空学报, 2015 , 36(9) : 3187 -3194 . DOI: 10.7527/S1000-6893.2014.0307
Carbon nanotube Buckypaper can be used as strain sensor for the monitoring of strain injury in structure and also can be used as temperature sensor to monitor the temperature change of environment. Buckypaper is fabricated with monodispersion solution of multi-walled carbon nanotubes through spray-vacuum filtration method. The morphology and mean pore size are characterized by field-emission scanning electron microscope and nitrogen adsorption-desorption. The response and sensitivity to strain and temperature of carbon nanotube Buckypaper are investigated. The results indicate that Buckypaper has a very high strain sensitivity in the strain range of 0-55 000 με with gauge factor of 10.21 (0-39 000 με) and 524.79 (39 000-55 000 με). After annealing treatment, temperature coefficient of resistance of carbon nanotube Buckypaper is -6.57%/℃ (20-100 ℃) and -3.25%/℃ (100-200 ℃) in heating stage and -5.79%/℃ (20-100 ℃) and -2.88%/℃ (100-200 ℃) in cooling stage with an excellent reversibility and repetition.
[1] Liu J H, Wu S Q, He C X, et al. Structure, property and application of carbon nanotubes and carbon microtubes[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 1-11 (in Chinese). 刘剑洪, 吴双泉, 何传新, 等. 碳纳米管和碳微米管的结构、性质及其应用[J]. 深圳大学学报理工版, 2013, 30(1): 1-11.
[2] Li M, Wang S K, Gu Y Z, et al. Research progress on macroscopic carbon nanotube assemblies and their composites[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2699-2721 (in Chinese). 李敏, 王绍凯, 顾轶卓, 等. 碳纳米管有序增强体及其复合材料研究进展[J]. 航空学报, 2014, 35(10): 2699-2721.
[3] Gao Y, Pan L. Research progress on the carbon nanotubes/polymer composites[J]. Materials Review A, 2014, 28(1): 59-63 (in Chinese). 高颖, 潘莉. 碳纳米管/聚合物基复合材料研究进展[J]. 材料导报A, 2014, 28(1): 59-63.
[4] Yu G Y, Li X B. Electrical properties of polyurethane/carbon nanotubes composites[J]. Engineering Plastics Appllication, 2012, 40(2): 12-15 (in Chinese). 余桂英, 李小兵. 聚氨酯/碳纳米管功能复合材料的电学性能研究[J]. 工程塑料应用, 2012, 40(2): 12-15.
[5] Zhao Q L, Liu Y, Wei N, et al. Photoelectric characteristics of self-assembled semiconducting carbon nanotube thin films[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1377-1383 (in Chinese). 赵青靓, 刘旸, 魏楠, 等. 自组装半导体碳纳米管薄膜的光电特性[J]. 物理化学学报, 2014, 30(7): 1377-1383.
[6] Chen J Y. Study on preparations and relevant mechanism of mechanical/thermal properties of MWCNTs/EP nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2014 (in Chinese). 陈金玉. 碳纳米管/环氧树脂纳米复合材料的制备及力、热性能影响机理[D]. 哈尔滨: 哈尔滨理工大学, 2014.
[7] Wang Y T, Liu Z D, Yi J, et al. Study on the piezoresistive effect of the multiwalled carbon nanotube films[J]. Acta Physica Sinica, 2012, 61(5): 405-410 (in Chinese). 王永田, 刘宗德, 易军, 等. 多壁碳纳米管薄膜的压阻效应研究[J]. 物理学报, 2012, 61(5): 405-410.
[8] Srivastava R K, Vemuru V S M, Zeng Y, et al. The strain sensing and thermal-mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films[J]. Carbon, 2011, 49(12): 3928-3936.
[9] Zhang R, Deng H, Valenca R, et al. Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading[J]. Composites Science and Technology, 2013, 74: 1-5.
[10] Zhang R, Deng H, Valenca R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability[J]. Sensors and Actuators A: Physical, 2012, 179: 83-91.
[11] Gao L M, Thostenson E T, Zhang Z G, et al. Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites[J]. Carbon, 2009, 47(5): 1381-1388.
[12] Njuguna M K, Yan C, Hu N, et al. Sandwiched carbon nanotube film as strain sensor[J]. Composites Part B: Engineering, 2012, 43(6): 2711-2717.
[13] Chen H Y, Jacobs O, Wu W, et al. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites[J]. Polymer Testing, 2007, 26(3): 351-360.
[14] Wang J Q. Study on the method of dispersing carbon nanotubes in epoxy resin[D]. Beijing: Beijing University of Chemical Technology, 2013 (in Chinese). 王建强. 碳纳米管在环氧树脂中分散方法研究[D]. 北京: 北京化工大学, 2013.
[15] Lee D, Hong H P, Lee M J, et al. A prototype high sensitivity load cell using single walled carbon nanotube strain gauges[J]. Sensors and Actuators A: Physical, 2012, 180: 120-126.
[16] Rein M D, Breuer O, Wagner H D. Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices[J]. Composites Science and Technology, 2011, 71(3): 373-381.
[17] Lv R, Tsuge S, Gui X C, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper[J]. Carbon, 2009, 47(4): 1141-1145.
[18] Li W K, Yuan J K, Dichiara A, et al. The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites[J]. Carbon, 2012, 50(11): 4298-4301.
[19] Luo S, Liu T. Structure-property-processing relationships of single-wall carbon nanotube thin film piezoresistive sensors[J]. Carbon, 2013, 59: 315-324.
[20] Njuguna M K, Yan C, Hu N, et al. Sandwiched carbon nanotube film as strain sensor[J]. Composites Part B: Engineering, 2012, 43(6): 2711-2717.
[21] Li X, Levy C, Elaadil L. Multiwalled carbon nanotube film for strain sensing[J]. Nanotechnology, 2008, 19(4): 045501.
[22] Mendoza D. Electrical properties of carbon nanofibers synthesized using carbon disulfide as precursor[J]. Optical Materials, 2006, 29(1): 122-125.
[23] Zou Y G, Ma X H, Shi Q L, et al. Synthesis of single walled carbon nanotubes and its thermal properties[J]. Journal of Changchun University of Technology: Natural Science Edition, 2011, 32(4): 334-337 (in Chinese). 邹永刚, 马晓辉, 史全林, 等. 单壁碳纳米管的制备及热学性质研究[J]. 长春工业大学学报: 自然科学版, 2011, 32(4): 334-337.
[24] Kukovecz , Smajda R, ze M, et al. Pyroelectric temperature sensitization of multi-wall carbon nanotube papers[J]. Carbon, 2008, 46(9): 1262-1265.
[25] Fan Q Q, Qin Z Y, Gao S L, et al. The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%[J]. Carbon, 2012, 50(11): 4085-4092.
[26] Gao S L, Zhuang R C, Zhang J, et al. Glass fibers with carbon nanotube networks as multifunctional sensors[J]. Advanced Functional Materials, 2010, 20(12): 1885-1893.
[27] Lu S W, Zhang C X, Zeng X J, et al. Properties of freestanding Buckypapers with monodispersion of multi-walled carbon nanotube aqueous solution[J]. Advanced Materials Research, 2013, 765-767: 3162-3165.
[28] Zhao Y L, Li W Z. Effect of annealing and HNO3-treatment on the electrical properties of transparent conducting carbon nanotube films[J]. Microelectronic Engineering, 2010, 87(4): 576-579.
/
〈 | 〉 |