电子与控制

一种适用于机场场面MLAT监视系统的定位算法及其性能分析

  • 彭卫 ,
  • 黄荣顺 ,
  • 郭建华 ,
  • 蒋凯 ,
  • 何东林
展开
  • 1. 中国民用航空总局第二研究所, 成都 610041;
    2. 四川农业大学 商学院, 成都 611830
黄荣顺 男, 博士, 高级工程师。主要研究方向: 空管自动化, MLAT系统总体设计。 Tel: 028-82909986 E-mail: caacsri_hrs@126.com;郭建华 男, 博士, 高级工程师。主要研究方向: MLAT定位算法, 目标关联等。 Tel: 028- 82909283 E-mail: 279281933@qq.com

收稿日期: 2014-08-12

  修回日期: 2014-10-21

  网络出版日期: 2014-11-15

基金资助

国家自然科学基金委员会与中国民用航空局联合资助(U1433129); 四川省教育厅基金(13ZB0287); 民航科技创新引导资金重大专项(14014J0340030)

A location algorithm suitable for MLAT surveillance system at airport surface and its performance analysis

  • PENG Wei ,
  • HUANG Rongshun ,
  • GUO Jianhua ,
  • JIANG Kai ,
  • HE Donglin
Expand
  • 1. The Second Research Institute of General Administration of Civil Aviation of China, Chengdu 610041, China;
    2. School of Business, Sichuan Agricultural University, Chengdu 611830, China

Received date: 2014-08-12

  Revised date: 2014-10-21

  Online published: 2014-11-15

Supported by

National Nature Science Foundation of China and Chinese Civil Aviation Jointly Funded Foundation Project(U1433129); The Scientific Research Fund of Sichuan Provincial Education Department(13ZB0287); Aeronautical Mobile Airport Communication System(14014J0340030)

摘要

与通常的三维目标不同,机场场面目标的高度是已知固定值,这点在设计应用于民用机场场面监视的无源多点时差定位(MLAT)系统时应予以考虑。基于机场场面目标及MLAT系统的特点,提出了一种改进的时差定位算法,该算法特别适合应用于场面监视的MLAT系统中。相比于传统的三维定位算法,该算法不但可以提高定位精度,还可增强系统的鲁棒性。给出了该改进时差定位算法的克拉美罗界(CRLB),并进一步推导出了该算法与三维定位算法精度之间的理论关系,从理论上证明了该算法的定位精度高于三维定位算法。与此同时,基于条件数理论还证明了该算法的鲁棒性优于三维定位算法。仿真实验及实测数据证明了所得结论的正确性和有效性。

本文引用格式

彭卫 , 黄荣顺 , 郭建华 , 蒋凯 , 何东林 . 一种适用于机场场面MLAT监视系统的定位算法及其性能分析[J]. 航空学报, 2015 , 36(9) : 3050 -3059 . DOI: 10.7527/S1000-6893.2014.0293

Abstract

Instead of regular three-dimensional targets, the height of targets at airport surface is a known constant and it should be considered when designing an multilateration (MLAT) system suitable for surveillance at civil airport surface. Based on the characteristics of target at airport surface and MLAT, we propose a modified time of difference arrival (TDOA) positioning algorithm, which is especially useful for MLAT system for the airport surface surveillance. Compared with traditional three-dimensional positioning way, the proposed algorithm not only improves the positioning accuracy but also gets greater system robustness. A corresponding Cramer-Rao lower bound(CRLB) of this algorithm is achieved, and the theoretical relation between two-dimensional and three-dimensional positioning algorithms is deduced, which further proves that the algorithm has higher precision than three-dimensional way. Meanwhile we use condition number theory to prove that the proposed algorithm has stronger robustness than three-dimensional positioning way. The simulation and practical measured data verify the correctness and effectiveness of the above conclusions.

参考文献

[1] Wu H G, Liu C Z, Huang Z T. Multilateration station selection method for airport surface surveillance[J]. Telecommunication Engineering, 2009, 49(12): 5-8 (in Chinese). 吴宏刚, 刘昌忠, 黄忠涛. 机场场面多点定位系统远端站优选方法[J]. 电讯技术, 2009, 49(12): 5-8.
[2] Galati G, Gasbarra M, Magar P, et al. New approaches to multilateration processing: Analysis and field evaluation[C]//Proceedings of the 3rd European Radar Conference. Piscataway, NJ: IEEE Press, 2006: 116-119.
[3] Roeder M. EMMA-European airport movement management by A-SMGCS-A contribution to the vision 2020[C]//25th Congress of the International Council of the Aeronautical Sciences. Hamburg: Red Hook, 2006: 4013-4019.
[4] Zhang J. New development and application of airspace surveillance technology[J]. Acta Aeronautica et AstronauticaSinica, 2011, 32(1): 1-14 (in Chinese). 张军. 空域监视技术的新进展及应用[J]. 航空学报, 2011, 32(1): 1-14.
[5] The International Civil Aviation Organization. Doc9830 AN/452 Advanced surface movement guidance and control system(A-SMGCS) manual [S]. Quebec: ICAO, 2004.
[6] European Organization for Civil Aviation Equipment. ED-117 Minimum operational performance specification for mode S multilateration system for use in advanced surface movement guidance and control system(A-ASMGCS)[S]. Paris: EUROCAE, 2003.
[7] Civil Aviation Administration of China. CCAR-158-R1 Provisions on the administration of civil airport construction[S]. Beijing: China Civil Aviation Press, 2005 (in Chinese). 中国民用航空总局.CCAR-158-R1民用机场建设管理规定[S]. 北京: 中国民航出版社, 2005.
[8] Ho K C, Chan Y T. Solution and performance analysis of geolocation by TDOA[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1311-1322.
[9] Chen Y G, Li C J, Li X H. A precision analyzing & reckoning model in tri-station TDOA location[J]. Acta Electronica Sinica, 2004, 32(9): 1452-1455 (in Chinese). 陈永光, 李昌锦, 李修和. 三站时差定位的精度分析与推算模型[J]. 电子学报, 2004, 32(9): 1452-1455.
[10] Yang L, Zhou Y Y, Xu H, et al. Passive location and error analysis using TDOA and aided height information by three stations[J]. Acta Electronica Sinica, 1998, 26(12): 71-74 (in Chinese). 杨林, 周一宇, 徐晖, 等. 利用三站TDOA及辅助高度信息的空间目标二维定位方法及误差分析[J]. 电子学报, 1998, 26(12): 71-74.
[11] Zhong D X, Deng X P, Zhou Y Y. A location method based on WGS-84 earth model using satellites TDOA measurements[J]. Journal of Astronautics, 2003, 24(6): 569-573 (in Chinese). 钟丹星, 邓新蒲, 周一宇. 一种基于WGS-84地球面模型的卫星测时差定位算法[J]. 宇航学报, 2003, 24(6): 569-573.
[12] Ho K C, Chan Y T. Geolocation of a known altitude object from TDOA and FDOA measurement[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 770-783.
[13] Xu Z L, Liu C Z, He D L, et al. Positioning solution using target barometric altitude[J]. Communications Technology, 2011, 44(1): 55-57 (in Chinese). 徐自励, 刘昌忠, 何东林, 等. 利用目标气压高度的多点定位算法[J]. 通信技术, 2011, 44(1): 55-57.
[14] Chan Y T, Ho K C. Simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915.
[15] Hahn W R, Tretter S A. Optimum processing for delay-vector estimation in passive signal arrays[J]. IEEE Transactions on Information Theory, 1973, 19(5): 608-614.
[16] Torrieri D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(2): 183-198.
[17] Todd K M, Stirling W C. Mathematical methods and algorithms for signal processing[M]. Upper Saddle River,New Jersey: Prentice Hall Inc, 2000: 250-270.
[18] Chan Y T, Hang H Y C, Ching P C. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10-16.
[19] Pent M, Spirito M A, Turco E, et al. Method for positioning GSM mobile stations using absolute time delay measurements[J]. Electronics Letters, 1997, 33(24): 2019-2020.
[20] Zhang X D. Linear algebra in signal processing[M]. Beijing: Science Press, 1997: 10-20 (in Chinese). 张贤达. 信号处理中的线性代数[M]. 北京: 科学出版社, 1997: 10-20.
[21] Gene H G, Charles F V L. Matrix computations[M]. 4th ed. Baltimore, Maryland:The Johns Hopkins University Press, 2013: 306-326.

文章导航

/