跨声速风洞全模颤振试验技术
收稿日期: 2014-07-29
修回日期: 2014-09-07
网络出版日期: 2014-11-06
Wind tunnel technique for transonic full-model flutter test
Received date: 2014-07-29
Revised date: 2014-09-07
Online published: 2014-11-06
介绍了跨声速全模颤振试验的发展现状和存在的问题。探讨了全模颤振试验对风洞和支撑系统等试验设备的要求。对于风洞,主要从风洞洞体和流场等方面分析了进行颤振试验所需要具备的性能,并以中国空气动力研究与发展中心的2.4 m跨声速风洞为例,介绍了进行颤振试验必须要采取的控制措施。对于支撑系统,则从模型运动自由度、支撑系统稳定性和支撑系统频率等方面的要求,阐述了设计支撑系统的困难,并简要分析了目前国内外发展的多种全模颤振支撑系统的结构原理及其优缺点。然后介绍了系统安全的保证措施,包括支撑系统稳定性分析、风洞紧急停车控制系统和模型保护装置等。最后根据飞行器发展的需求,探讨了今后需要完善和发展的几个主要问题。
路波 , 吕彬彬 , 罗建国 , 余立 , 杨兴华 , 郭洪涛 , 曾开春 . 跨声速风洞全模颤振试验技术[J]. 航空学报, 2015 , 36(4) : 1086 -1092 . DOI: 10.7527/S1000-6893.2014.0249
A review on the status of transonic wind tunnel technique for full-model flutter test is presented in this paper. The requirements on wind tunnel facility and supporting system are introduced. For wind tunnel, some special requirements on the size of wind tunnel and its quality of flow field for flutter test are analyzed. Taking example of the 2.4 m' transonic wind tunnel in the China Aerodynamic Research and Development Center, the demand control of flow states for flutter tests is introduced. As to the full-model support, the restrictions to design appropriate supporting system are emphasized from model rigid-body freedoms, stability and frequencies of the total system. Several full-model support systems are given and analyzed as examples for design reference. Then some measures to guarantee system security are presented, including static and dynamic stability of the system, emergency brake of the wind tunnel, and model protect. Finally, according to the requirements of vehicle development,several major orientation problems that we need to improve and develop in the future are discussed.
[1] Garrick I E, Reed W H. Historical development of aircraft flutter[J]. Journal of Aircraft, 1981, 18(11):981-994.
[2] Chuck H. Accelerated flutter testing: a possible technique to expedite flutter testing for new aircraft, AIAA-2004-6822[R]. Reston: AIAA, 2004.
[3] Stanley R C, Jose A R, Nagaraja K S. Flutter study of an advanced composite wing with external stores, AIAA-1987-0880[R]. Reston: AIAA, 1987.
[4] Rivera J A, Florance J R. Contributions of transonic dynamics tunnel testing to airplane flutter clearance, AIAA-2000-1768[R]. Reston: AIAA, 2000.
[5] Livne E, Terrence A W. Aeroelasticity of nonconventional airplane configurations—past and future[J]. Journal of Aircraft, 2003, 40(6): 1047-1065.
[6] Stanley R C, Thomas E N, Boyd P. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5): 820-831.
[7] Yang C, Xiao Z P, Wang Z Q. A robust aeroelastic optimization method of structure and trim for air vehicle with multiple control surfaces [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 75-82 (in Chinese). 杨超, 肖志鹏, 万志强. 多控制面飞行器结构与配平鲁棒气动弹性优化方法.[J] 航空学报, 2011, 32(1): 75-82.
[8] Yang G W, Qian W. Numerical analyses of transonic flutter on an aircraft [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 769-776 (in Chinese). 杨国伟, 钱卫. 飞行器跨声速气动弹性数值分析[J]. 力学学报, 2005, 37(6): 769-776.
[9] Lu Z L, Guo T Q, Guan D. A study of calculation method for transonic flutter [J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3): 214-217 (in Chinese). 陆志良, 郭同庆, 管德. 跨音速颤振计算方法研究[J].航空学报, 2004, 25(3): 214-217.
[10] Wu Z G, Yang C. Aeroservoelastic design optimization of flexible wings [J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 570-573(in Chinese). 吴志刚, 杨超. 机翼的气动伺服弹性优化设计研究[J]. 航空学报, 2006, 27(4): 570-573.
[11] Cui P, Han J L. Investigation of nolinear aeroelastic analysis using CFD/CSD [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 480-486 (in Chinese). 崔鹏, 韩景龙. 基于CFD/CSD的非线性气动弹性分析方法[J].航空学报, 2010, 31(3): 480-486.
[12] Ricketts R H. Experimental aeroelasticity—history, status and future in brief, NASA/TM-102651[R]. Hampton: NASA Langley Research Center, 1990.
[13] Cole S R, Noll T E, Perry B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft. 2003, 40(5): 820-831.
[14] Reed W H. Aeroelasticity matters: some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel, NASA/TM-83210[R]. Hampton: NASA Langley Research Center, 1981.
[15] Ricketts R H, Noll T E, Whitlow W Jr. An overview of aeroelasticity studies for the National AeroSpace plane, AIAA-1993-1313[R]. Reston: AIAA, 1993.
[16] Lu B, Yang X H, Luo J G, et al. Floating suspension system for full model flutter test in transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 90-94 (in Chinese). 路波, 杨兴华, 罗建国, 等. 跨声速风洞全模颤振试验悬浮支撑系统[J].实验流体力学, 2009, 23(3): 90-94.
[17] Guo H T, Lu B, Yu L, et al. Investigation on full-model flutter of a certain fighter plane in high-speed wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1765-1771 (in Chinese). 郭洪涛, 路波, 余立, 等. 某战斗机高速全模颤振风洞试验研究[J]. 航空学报, 2012 ,33(10): 1765-1771.
[18] Bennett R M, Farmer M G. A wind tunnel technique for determining stability derivatives from cable mounted aeroelastic models, AIAA-1977-1128[R]. Reston: AIAA, 1977.
[19] Thompson N, Farmer M. A stability analysis of an F/A-18 E/F cable mount model, NASA/TM-108989[R]. Hampton: NASA Langley Research Center, 1994.
[20] Chin J, Barbero P. User's guide for a revised computer program to analyze the LRC 16 foot transonic dynamics tunnel active cable mount system, NASA/CR-132692[R]. Hampton: NASA Langley Research Center, 1975.
/
〈 | 〉 |