电子与控制

航天器悬停构型设计与控制方法

  • 饶殷睿 ,
  • 韩潮 ,
  • 殷建丰 ,
  • 陈欢
展开
  • 1. 北京航空航天大学 宇航学院, 北京 100191;
    2. 中国空间技术研究院 总体部, 北京 100094
饶殷睿 男, 博士研究生。主要研究方向: 航天器相对运动, 卫星编队飞行。 Tel: 010-82316536 E-mail: raoyinrui@sa.buaa.edu.cn;殷建丰 男, 博士, 工程师。主要研究方向: 航天器动力学与控制, 航天器相对运动。 Tel: 010-68745433 E-mail: jianfengabc@gmail.com

收稿日期: 2014-08-06

  修回日期: 2014-11-02

  网络出版日期: 2014-11-06

Method of spacecraft hovering formation design and control

  • RAO Yinrui ,
  • HAN Chao ,
  • YIN Jianfeng ,
  • CHEN Huan
Expand
  • 1. School of Astronautics, Beihang University, Beijing 100191, China;
    2. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2014-08-06

  Revised date: 2014-11-02

  Online published: 2014-11-06

摘要

为满足航天器在轨服务任务对悬停技术的需求,对航天器悬停构型的设计与控制问题进行了研究。通过任务航天器轨道设计得出目标航天器与任务航天器的绝对轨道关系,并用以说明悬停轨道的形成机理。结合任务航天器相对于目标航天器的相对轨迹,采用具有严格定义的相对轨道要素,对悬停轨道在目标航天器轨道平面内和平面外的构型进行描述。对"间隔式"的悬停构型脉冲控制策略进行推导,以实现任务航天器在目标航天器任意位置的长期悬停,并在此基础上分析悬停构型变化对速度脉冲的影响。最后,通过典型仿真算例验证所提方法与结果的正确性和有效性,并获得任务航天器在不同悬停轨道间转移的实现过程。研究结果完善了航天器悬停轨道的设计与控制方法,并说明了设计的悬停轨道具有可行性,能够为工程任务设计人员提供参考。

本文引用格式

饶殷睿 , 韩潮 , 殷建丰 , 陈欢 . 航天器悬停构型设计与控制方法[J]. 航空学报, 2015 , 36(7) : 2361 -2371 . DOI: 10.7527/S1000-6893.2014.0310

Abstract

To satisfy the need of the hovering technology in the spacecraft on-orbit servicing mission, a study on spacecraft hovering formation design and control is carried out. By designing the mission spacecraft orbit, the absolute orbit relationship between the target spacecraft and the mission spacecraft is presented and the mechanism of the hovering orbit is illustrated. According to the relative trajectory of the mission spacecraft relative to the target spacecraft, and using the well-defined relative orbit elements, the configuration of the hovering orbit in the target spacecraft orbital plane and out of the target spacecraft orbital plane are described. An interval impulse control strategy for hovering formation is derived and the mission spacecraft can be remained at a specified position to the target spacecraft for a long time. Furthermore, the effect of the hovering formation on the required velocity impulse is analyzed. The proposed method and conclusions are validated by simulation through some typical examples. A process of making the mission spacecraft transfer between two hovering orbits is presented. The study improves the design and control methods of spacecraft hovering orbit, and indicates the feasibility of the designed hovering orbit. The theory of spacecraft hovering dynamics and control is improved and the results could provide some references for the designers of the engineering missions.

参考文献

[1] Waltz D M. On-orbit servicing of space systems[M]. Florida: Krieger Publishing Company, 1993: 193-227.
[2] Motaghedi P. On-orbit performance of the orbital express capture system[C]//Proceedings of Society of Photo-Optical Instrumentation Engineers. Bellingham, WA: SPIE, 2008: 69580E-1-12.
[3] Shoemaker J, Wright M, Sivapiragasam S. Orbital express space operations architecture program[C]//Proceedings of the 17th Annual AISS/USU Conference on Small Satel. Reston: AIAA, 2003: 1-9.
[4] D'Amico S, Gill E, Montenbruck O. Relative orbit control design for the PRISMA formation flying mission, AIAA-2006-6067[R]. Reston: AIAA, 2006.
[5] Bodin P, Larsson R, Nillsson F, et al. PRISMA: an in-orbit test bed for guidance, navigation, and control experiments[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 615-623.
[6] Yin J F. Study of elliptical relative motion between two close spacecrafts[D]. Beijing: Beihang University, 2013 (in Chinese). 殷建丰. 椭圆轨道航天器近距离相对运动问题研究[D]. 北京: 北京航空航天大学, 2013.
[7] Sawai S, Scheeres D J, Broschart S B. Control of hovering spacecraft using altimetry[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 786-795.
[8] Lu E T, Love S G. Gravitational tractor for towing asteroids[J]. Nature, 2005, 438(7065): 177-178.
[9] Gehler M, Ober-Blobaum S, Dachwald B, et al. Optimal control of gravity tractor spacecraft near arbitrarily shaped asteroids[C]//Proceedings of the 1st IAA Planetary Defense Conference: Protecting Earth from Asteroids, 2009: 1-8.
[10] Lin L X, Li K. Orbit dynamics and control of satellites hovering over space target[J]. Chinese Space Science and Technology, 2008, 2(1): 9-13 (in Chinese). 林来兴, 黎康. 卫星对空间目标悬停的轨道动力学与控制方法研究[J]. 中国空间科学技术, 2008, 2(1): 9-13.
[11] Wang G B, Zheng W, Meng Y H, et al. Research on hovering control scheme to non-circular orbit[J]. Sci China Tech Sci, 2011, 41(11): 1505-1511 (in Chinese). 王功波, 郑伟, 孟云鹤, 等. 相对非圆轨道的悬停控制方法研究[J]. 中国科学: 技术科学, 2011, 41(11): 1505-1511.
[12] Hope A S, Trask A J. Pulsed-thrust method for hover formation flying[C]//Proceedings of AAS/AIAA Astrodynamics Specialists Conference. San Diego, CA: Univelt. Inc., 2008: 1-11.
[13] Lovell T A, Tollefson M V. Calculation of impulsive hovering trajectories via relative orbit elements[J]. Advances in the Astronautical Sciences, 2006, 123(3): 2533-2548.
[14] Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9): 653-658.
[15] Yin J F, Han C. Impulsive hovering formation based on relative orbit elements[C]//Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting. San Diego, CA: Univelt. Inc., 2013: 1-16.
[16] Alfriend K T, Vadali S R, Gurfil P, et al. Spacecraft formation flying dynamics, control and navigation[M]. London: Butterworth-Heinemann, 2010: 13-16.
[17] D'Amico S, Montenbruck O. Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation[J]. Journal of Guidance, Control, and Dynamcis, 2006, 29(3): 554-563.
[18] Xiao Y L. Theory of flight dynamics for spacecraft[M]. Beijing: China Astronautic Publishing House, 1995: 118-123 (in Chinese). 肖业伦. 航天器飞行动力学原理[M]. 北京: 宇航出版社, 1995: 118-123.
[19] Han C, Yin J F. Study on satellite relative motion in eccentric orbit using relative orbit elements[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2244-2258(in Chinese). 韩潮, 殷建丰. 基于相对轨道要素的椭圆轨道卫星相对运动研究[J]. 航空学报, 2011, 32(12): 2244-2258.
[20] Battin R H, Vaughan R M. An elegant lambert algorithm[J]. Journal of Guidance, Control and Dynamics, 1984, 7(6): 662-670.
[21] He Q. Research of guidance method for spacecraft rendezvous and docking mission[D]. Beijing: Beihang University, 2010 (in Chinese). 贺泉. 航天器交会对接导引方法研究[D]. 北京: 北京航空航天大学, 2010.
文章导航

/