流体力学与飞行力学

新型人工转捩技术及风洞试验验证

  • 赵子杰 ,
  • 高超 ,
  • 张正科
展开
  • 西北工业大学 航空学院, 西安 710072
赵子杰 男, 博士研究生。主要研究方向: 跨声速空气动力学, 流动控制。 E-mail: zhaozijie84@gmail.com;高超 男, 博士, 教授, 博士生导师。主要研究方向: 实验空气动力学, 计算空气动力学。 Tel: 029-88491224-12 E-mail: gaochao@nwpu.edu.cn;张正科 男, 博士, 教授, 硕士生导师。主要研究方向: 计算空气动力学。 Tel: 029-88491224-15 E-mail: zkzhang@nwpu.edu.cn

收稿日期: 2014-08-18

  修回日期: 2014-09-09

  网络出版日期: 2014-10-31

基金资助

西北工业大学基础研究基金 (JC-201103); 航空科学基金 (2013ZD53057)

An innovative artificial transition technique and its validation through wind tunnel tests

  • ZHAO Zijie ,
  • GAO Chao ,
  • ZHANG Zhengke
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-08-18

  Revised date: 2014-09-09

  Online published: 2014-10-31

Supported by

NPU Basic Research Foundation (JC-201103); Aeronautical Science Foundation of China (2013ZD53057)

摘要

给出了一种新型分布型人工转捩粗糙元设计技术,该技术解决了传统人工转捩方法在跨声速风洞试验中存在的效率低、可靠性和重复性差等问题。通过理论研究确定了该转捩技术的形式,包括粗糙元形状、高度和排列方式等技术参数以及针对不同模型的设计方案;同时对翼型模型(NACA0012)和全机模型(GBM-01或AGARD-B标模)在不同马赫数和迎角下分别进行了测压和测力风洞试验,借助升华法,对人工转捩技术的边界层转捩效果进行了验证研究。结果表明:在不同模型上使用不同的设计方案,该转捩技术可以得到可靠的固定转捩效果,并获得具有大气飞行中高雷诺数特点的气动力结果。

本文引用格式

赵子杰 , 高超 , 张正科 . 新型人工转捩技术及风洞试验验证[J]. 航空学报, 2015 , 36(6) : 1830 -1838 . DOI: 10.7527/S1000-6893.2014.0284

Abstract

An innovative artificial transition technique of distributed roughness elements is designed aimed at solving the problems encountered in fixed artificial transition tests with traditional methods in transonic wind tunnel. The shape, height and arrangement of the roughness elements and the design schemes for different configurations of models are determined by theoretical analysis. Meanwhile, the pressure coefficient on an airfoil surface (NACA0012) and the aerodynamic coefficients on an airplane model (GMB-01, or AGARD-B calibration model) are measured in the tests of artificial fixed transition. Sublimation flow visualization technique is used to judge or identify transition. The differences between natural free transition and artificial fixed transition are analyzed. The effectiveness of the innovative artificial transition technique is observed and analyzed. The results show that this kind of innovative artificial transition technique can trigger boundary layer transition from laminar to turbulent and is able to obtain aerodynamic results comparable to those at the high Reynolds number atmospheric flight conditions.

参考文献

[1] Fan J C. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002: 313-314 (in Chinese). 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002: 313-314.
[2] Chen H M. Interference and correction on wind tunnel testing[M]. Beijing: National Defense Industry Press, 2003: 292-299 (in Chinese). 程厚梅. 风洞试验干扰与修正[M]. 北京: 国防工业出版社, 2003: 292-299.
[3] Liepmann H, Fila G H. Investigations of effects of surface temperature and single roughness elements on boundary layer transition, NACA Report TN-890[R]. Washington, D.C.: NASA, 1947.
[4] Albert E, Elmer A. A low-speed experimental investgation of the effect of a sandpaper type of roughness on boundary-layer transition, NACA Report-1349[R]. Washington, D.C.: NASA, 1956.
[5] Barlow J B, Rae W H, Jr, Pope A. Low-speed wind tunnel testing[M]. New York: Wiley Press, 1999: 306-317.
[6] Huang Y, Qian F X, Yu K L. Experimental investigation on boundary layer artificial transition based on transition trip disk[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 59-62 (in Chinese). 黄勇, 钱丰学, 于昆龙. 基于柱状粗糙元的边界层人工转捩试验研究[J]. 实验流体力学, 2006, 20(3): 59-62.
[7] Slangen R. Experimental investigation of artificial boundary layer transition[D]. Delft: Delft University of Technology, 2009.
[8] Traub L W. Experimental investigation of the effect of trip strips at low Reynolds number[J]. Journal of Aircraft, 2011, 48(5): 1776-1784.
[9] Casper K M, Johnson H B, Schneider S P. Effect of free stream noise on roughness-induced transition for a slender cone[J]. Journal of Spacecraft and Rockets, 2011, 48(3): 406-413.
[10] Borg M P, Schneider S P, Juliano T J. Effect of free stream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1106-1116.
[11] Ito T, Randall L A, Schneider S P. Effect of noise on roughness-induced boundary-layer transition for scramjet inlet[J]. Journal of Spacecraft and Rockets, 2001, 38(5): 692-698.
[12] Donehoff A E, Horton E A. A low-speed experimental investigation of the effect of a sandpaper type of roughness on boundary-layer transition, NACA TN 3858[R]. Washington, D.C.: NASA, 1958.
[13] Braslow A L. Effect of distributed Granular-type roughned on boundary-layer transition at supersonic speeds with and without surface cooling, NACA RM L58A17[R]. Washington, D.C.: NASA, 1958.
[14] Braslow A L, Knox E C. Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5, NASA TN 4363[R]. Washington, D.C.: NASA, 1958.
[15] Arnal D, Vermeersch O. Compressibility effects on laminar-turbulent boundary layer transition[C]//45th Symposium of Applied Aerodynamics. Marseille: Inderscience Publishers, 2010: 22-24.
[16] Klebanoff P S, Schubauer G B, Tidstrom K D. Measurement of the effect of two-dimensional and three-dimensional roughness elements on boundary-layer transition[J]. Journal of the Aeronautical Sciences, 1955, 22(11): 803.
[17] Chen Y C, Si J T, Han X L, et al. Investigation of transition effect on the pressure distribution of supercritical wing[J]. Acta Aerodynamica Sinica, 2003, 21(4): 470-475 (in Chinese). 陈迎春, 司江涛, 韩先锂, 等. 转捩对超临界机翼压力分布的影响分析[J]. 空气动力学学报, 2003, 21(4): 470-475.
[18] Bernardini M, Pirozzoli S, Orlandi P. Parameterization of boundary-layer transition induced by isolated roughness elements[J]. AIAA Journal, 2014, 52(10): 2261-2269.
[19] White E B, Rice J M, Ergin F G. Receptivity of stationary transient disturbances to surface roughness[J]. Physics of Fluids, 2005, 17: 064109.
[20] Denissen N A, White E B. Roughness-induced bypass transition, revisited[J]. AIAA Journal, 2008, 46(7): 1874-1877.
[21] Ergin F G, White E B. Unsteady and transitional flows behind roughness elements[J]. AIAA Journal, 2006, 44(11): 2504-2514.
[22] Braslow A L, Harris R V, Hicks R. Use of grit type boundary layer transition strips on wind tunnel models, NASA TN-D3579[R]. Washington, D.C.: NASA, 1966.
[23] Fan J C. Modern flow visualization[M]. Beijing: National Defense Industry Press, 2002: 240-248 (in Chinese). 范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002: 240-248.
[24] Anderson J D, Jr. Fundamentals of aerodynamics[M]. New York: McGraw-Hill Book Company, 1991: 348-349.
[25] Yang Y, Zuo S H, Li X L, et al. Transition studies for the boundary layer on a swept wing based on sublimation technique[J]. Journal of Experiment in Fluid Mechanics, 2009, 23(3): 40-43 (in Chinese). 杨永, 左岁寒, 李喜乐, 等. 基于升华法试验研究后掠翼三维边界层的转捩[J]. 实验流体力学, 2009, 23(3): 40-43.
[26] Damljanovié D, Vitic A, Vukovic D. Testing of AGARD-B calibration model in the T-38 transonic wind tunnel[J]. Scientific-Technical Review, 2006, LVI (2): 52-62.

文章导航

/