开式空腔气动声学特性及其流动控制方法
收稿日期: 2014-08-18
修回日期: 2014-10-22
网络出版日期: 2014-10-29
Aeroacoustic characteristics and flow control method of open cavity flow
Received date: 2014-08-18
Revised date: 2014-10-22
Online published: 2014-10-29
在高速风洞中对空腔流场气动声学特性进行了试验研究,采用剪切层扰流法对流场进行流动控制,空腔长深比为4.1。通过对空腔流场的脉动压力试验结果分析,研究了亚、跨声速条件下开式空腔流场的气动声学特性及气动噪声抑制效果,对开式空腔流场气动噪声形成机制及流动控制机理进行了分析。试验结果表明:开式空腔流场气动声学环境恶劣,最大总声压级(OSPL)高达177 dB;开式空腔流场存在强烈的自持振荡,声压频谱曲线上存在多个不同模态的单调声;亚声速条件下,采用剪切层扰动法进行流动控制可导致空腔流场气动声学环境更加恶劣;跨声速时,采用剪切层扰动法进行流动控制使空腔流场气动声学环境明显改善。
吴继飞 , 徐来武 , 范召林 , 罗新福 . 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015 , 36(7) : 2155 -2165 . DOI: 10.7527/S1000-6893.2014.0294
An experiment is conducted in a high-speed wind tunnel to research cavity flow aeroacoustic characteristics. A flow control method which can disturb cavity shear layer is used in this experiment. The length to depth ratio of the cavity is 4.1. Aeroacoustic characteristics and effect of flow control method are analyzed by using fluctuating pressure results measured under subsonic and transonic speed conditions. Mechanisms of self-sustained oscillation and flow control about open cavity flow are analyzed in this paper. Results indicate that the aeroacoustic environment is so bad that the maximum overall sound pressure level (OSPL) can reach 177 dB. There is strong self-sustained oscillation existing in the open cavity flow. Several tones of different modes can be found in the cavity sound pressure spectra. The cavity aeroacoustic environment can be worse when the shear layer interruption is adopted at subsonic speed but the reverse effect can be achieved at transonic speed.
[1] Charwat A F, Roos J N, Dewey F C, et al. An investigation of separated flow—Part I: the pressure field[J]. Journal of the Aerospace Sciences, 1961, 28(6): 457-470.
[2] Vnalmis H, Clemens N T, Dolling D S. Planar laser imaging of a supersonic side-facing cavity, AIAA-1999-0297[R]. Reston: AIAA, 1999.
[3] Scheiman J. Acoustic measurements of a large cavity in a wind tunnel, NASA TM-78658[R]. Washington, D.C.: NASA, 1978.
[4] Krishnamuty K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surface, NACA TN-3487[R]. Washington, D.C.: NASA, 1955.
[5] Roshko A. Some measurements of flow in a rectangular cut-out, NACA TN-3488[R]. Washington, D.C.: NASA,1955.
[6] Stallings R L, Wilcox F J. Experimental cavity pressure distributions at supersonic speeds, NASA TP-2683[R]. Washington, D.C.: NASA, 1987.
[7] Stallings R L, Wilcox F J. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds, NASA TP-3110[R]. Washington, D.C.: NASA, 1991.
[8] Richard E D, Carroll B. Cavity aeroacoustics, AFATL TP-90-08[R]. 1990.
[9] Dix R E, Bauer R C. Experimental and theoretical study of cavity acoustics, AEDC TR-99-4[R]. 1999.
[10] Ross J. High speed acoustic measurements in cavities, AFRL SR-BL-TR-01-0248[R]. 2001.
[11] Heller H H, Bliss D B. Aerodynamically induced pressure oscillations in cavities—physical mechanisms and suppression concepts, AFFDL TR-74-133[R]. 1974.
[12] Rockwell D, Naudascher E. Review—self-sustaining oscillations of flow past cavities[J]. Journal of Fluid Engineering, 1978, 100(2): 152-165.
[13] Mcgrath S F, Shaw L L, Jr. Active control of shallow cavity acoustic resonance, AIAA-1996-1949[R]. Reston: AIAA, 1996.
[14] Sarohia V, Massier P F. Control of cavity noise[J]. Journal of Aircraft, 1977, 14(9): 833-837.
[15] Smith B R, Welterlen T J, Maines B H, et al. Weapons bay acoustic suppression from rod spoilers, AIAA-2002-0662[R]. Reston: AIAA, 2002.
[16] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840-1845 (in Chinese). 吴继飞, 罗新福, 范召林. 内埋式空腔流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840-1845.
[17] Wu J F, Tao Y, Fan Z L, et al. Analysis of the effect of the modification at the trailing edge on cavity flow characteristics[J]. Acta Aerodynamica Sinica, 2010, 28(2): 197-202 (in Chinese). 吴继飞, 陶洋, 范召林, 等. 后缘修型对空腔流场特性影响分析[J]. 空气动力学学报, 2010, 28(2): 197-202.
[18] Yang D G, Wu J F, Luo X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1007-1014 (in Chinese). 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6): 1007-1014.
[19] Muning A г. Aeroacoustics[M]. Cao C J, translated. Beijing: Beihang University Press, 1993: 1-3. (in Chinese). A.г. 穆宁. 航空声学[M]. 曹传钧, 译. 北京: 北京航空航天大学出版社, 1993: 1-3.
[20] Rossiter J E. Wind-tunnel experimental on the flow over rectangular cavities sat subsonic and transonic speeds, R.& M. No. 3438[R]. 1964.
[21] Heller H H, Holmes G, Covert E E. Flow-induced pressure oscillations in shallow cavities, AFFDL TR-70-104[R]. 1970.
[22] Bilanin A J, Covert E E. Estimation of possible excitation frequencies for shallow rectangular cavities[J]. AIAA Journal, 1973, 11(3): 347-351.
[23] Tam C K W, Block P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399.
[24] Slomski J F, Zoccola P J, Ebert M P, et al. Simulation of shear driven cavity flows using unstructured hybrid RANS/LES, AIAA-2005-0881[R]. Reston: AIAA, 2005.
/
〈 | 〉 |