恒虚警下复合载波导航信号联合捕获方法
收稿日期: 2014-07-09
修回日期: 2014-10-13
网络出版日期: 2014-10-29
基金资助
国家自然科学基金 (61102130, 61304235)
A Joint acquisition method for navigation signal based on compound carrier with constant false alarm rate
Received date: 2014-07-09
Revised date: 2014-10-13
Online published: 2014-10-29
Supported by
National Natural Science Foundation of China (61102130, 61304235)
复合载波导航信号(NSCC)作为一种新型的导航增强信号体制,其独特的多载波结构和灵活的体制参数设计,使之具备良好的导航增强效能。同时,以上典型信号特征也使得传统的导航信号同步算法对其不再适用。针对复合载波导航信号结构特征和体制参数设计特点,提出了一种基于多载波架构的恒虚警联合捕获方法。该方法利用复合载波导航信号各子载波信号功率进行自适应检测门限设置,并利用各子载波频点间隔信息进行并行检测,然后根据联合策略做出判决,提升了捕获性能和捕获效率。理论分析及仿真实验均表明,在低信噪比(SNR)情况下,本文所提出的联合捕获方法的捕获性能明显优于单载波捕获算法,并缩短了平均捕获时长。
罗瑞丹 , 徐颖 , 袁洪 . 恒虚警下复合载波导航信号联合捕获方法[J]. 航空学报, 2015 , 36(7) : 2381 -2390 . DOI: 10.7527/S1000-6893.2014.0285
Navigation signal based on compound carrier (NSCC), as a novel signal structure for navigation augmentation, has a special multi-carrier structure and flexible structure parameters, which enable it to possess significant efficiency of navigation augmentation. However, due to the special structure of NSCC, the traditional acquisition algorithms cannot be applied to the NSCC. In this paper, based on the characteristics of NSCC, we propose a kind of joint acquisition method with constant false alarm rate for multi-carrier system by utilizing the known information of NSCC. In this method, the adaptive detection threshold of sub-carrier is set respectively according to its power. Besides, the joint detection is achieved by using the sub-carrier frequency interval to improve the acquisition performance and efficiency. Both the theoretical analysis and simulation results illustrate that the acquisition performance of this method beats the single-carrier signal and the acquisition time is also efficiently reduced as well.
[1] Pelton J N. Trends and future of satellite communications[M]. New York: International Engineering Consortium, 2013: 533-557.
[2] Cui J X, Shi H L. Satellite communication and navigation integrated signal[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(8): 4351-4356.
[3] Garcia-Pena A, Julien O, Macabiau C, et al. FMT signal options and associated receiver architectures for GNSS[C]//Proceedings of IEEE/ION Position Location and Navigation Symposium (PLANS), 2012: 898-912.
[4] Emmanuele A, Luise M, Won J H, et al. Evaluation of filtered multitone (FMT) technology for future satellite navigation use[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2011: 3743-3755.
[5] Liu X, Liang M, Morton Y, et al. Performance evaluation of MSK and OFDM modulations for future GNSS signals[J]. GPS Solutions, 2014, 18(2): 163-175.
[6] Deng Z, Yu Y, Yuan X, et al. Situation and development tendency of indoor positioning[J]. China Communications, 2013, 10(3): 42-55.
[7] Xu Y, Yuan H. Navigation signal structure based on complex carrier modulation[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(6): 1035-1045.
[8] Zhao S J, Zhao J X. Signal detection and estimation theory[M]. Beijing: Tsinghua University Press, 2005: 452-453 (in Chinese). 赵树杰, 赵建勋. 信号检测与估计理论[M]. 北京: 清华大学出版社, 2005: 452-453.
[9] Axelrad P, Bradley B K. Collective detection and direct positioning using multiple GNSS satellites[J]. Navigation: Journal of the Institute of Navigation, 2012, 58(4): 305-321.
[10] Tong H B, Zhu X W, Zhang G Z, et al. Detection performance analysis of joint acquisition for multi-satellite signals[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1069-1074 (in Chinese). 仝海波, 朱祥维, 张国柱,等. 多卫星导航信号联合捕获算法的检测性能分析[J]. 电子与信息学报, 2014, 36(5): 1069-1074.
[11] Li X J, Xu L P, Zheng W S. Joint code phase acquisition and Doppler frequency shift estimation for GPS sigals[J]. Journal of Astronautics, 2012, 33(12): 1758-1773 (in Chinese). 李小捷, 许录平, 郑文松. GPS信号的码相位与多普勒频率联合捕获[J]. 宇航学报, 2012, 33(12): 1758-1773.
[12] Closas P, Fernandez-Prades C, Fernandez-Rubio J A. Maximum likelihood estimation of position in GNSS[J]. IEEE Signal Processing Letters, 2007, 14(5): 359-362.
[13] Weil L R. A high performance code and carrier tracking architecture for ground-based mobile GNSS receiver[C]//Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation, 2010: 3054-3068.
[14] Closas P, Fernandez-Prades C, Fernandez-Rubio J A. Cramer-Rao bound analysis of positioning approaches in the GNSS receivers[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 3775-3786.
[15] Tong X J, Luo T. OFDM mobile communication technology principles and applications[M]. Beijing: People Post Press, 2003: 66-68 (in Chinese). 佟学俭, 罗涛. OFDM移动通信技术原理与应用[M]. 北京: 人民邮电出版社, 2003: 66-68.
[16] Spangenberg S M, Scott I, McLaughlin S, et al. An FFT-based approach for fast acquisition in spread spectrum communication systems[J]. Wireless Personal Communications, 2000, 13(1-2): 27-55.
[17] Molino A, Girau G, Nicola M, et al. Evaluation of a FFT-based acquisition in real time hardware and software GNSS receivers[C]//IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, ISSSTA'08, 2008: 32-36.
[18] Borio D, O'driscoll C, Lachapelle G. Composite GNSS signal acquisition over multiple code periods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 193-206.
[19] Srinivasan R, Rangaswamy M. Importance sampling for characterizing STAP detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 273-285.
[20] Xia S Z, Dai F Z, Liu H W. A method of determining detection threshold for bayesian track-before-detection in white complex gaussian noise[J]. Journal of Electronics & Information Technology, 2013, 35(3): 524-531 (in Chinese). 夏双志, 戴奉周, 刘宏伟. 复高斯白噪声背景下贝叶斯检测前跟踪的检测阈值设置方法[J]. 电子与信息学报, 2013, 35(3): 524-531.
[21] Zhang Q W. Random sognal analysis[M]. Xi'an: Xidian University Press, 1984: 128-131 (in Chinese). 章潜五. 随机信号分析[M]. 西安: 西安电子科技大学出版社, 1984: 128-131.
[22] Holms J K, Chang C C. Acquisition time performance of PN spread-spectrum system[J]. IEEE Transactions on Communications, 1977, 25(8): 778-784.
/
〈 | 〉 |