发动机

基于亚燃的高超声速冲压发动机内流道研究

  • 段晰怀 ,
  • 郑日恒 ,
  • 李立翰
展开
  • 1. 北京动力机械研究所, 北京 100074;
    2. 北京动力机械研究所 高超声速冲压发动机技术重点实验室, 北京 100074
段晰怀 男,硕士。主要研究方向:航空宇航推进理论与工程冲压发动机总体技术。 E-mail: duanxihuai@163.com;郑日恒 男,博士,教授。主要研究方向:超声速/高超声速冲压发动机,高超声速组合循环发动机,进气道与尾喷管中的复杂动力学。 Tel: 010-68375352 E-mail: riheng@hotmail.com

收稿日期: 2014-08-24

  修回日期: 2014-10-20

  网络出版日期: 2014-10-21

基金资助

高超声速冲压发动机技术重点实验室开放基金(20120103006)

Internal flowpath for hypersonic ramjet based on subsonic combustion

  • DUAN Xihuai ,
  • ZHENG Riheng ,
  • LI Lihan
Expand
  • 1. Beijing Power Machinery Institute, Beijing 100074, China;
    2. Science and Technology on Scramjet Laboratory, Beijing Power Machinery Institute, Beijing 100074, China

Received date: 2014-08-24

  Revised date: 2014-10-20

  Online published: 2014-10-21

Supported by

Science and Technology on Scramjet Laboratory Open Fund (20120103006)

摘要

为了研究亚燃冲压发动机在高超声速条件下工作的性能,采用总体性能计算方法和流体力学仿真对基于突扩燃烧的高马赫数亚燃冲压发动机内流通道进行匹配设计研究,得到了其速度特性和调节特性。结果表明,设计出的亚燃冲压发动机在高超声速范围内性能良好,能够正常工作。在接力点处, 马赫数Ma=3.5,高度H=12 km,得到最大推力系数为0.649,此时比冲为13 801.2 N·s/kg;在巡航点处,Ma=5.0,H=21 km,发动机余气系数α=1.8时,得到推力系数为0.370,此时最大比冲为12 574.0 N·s/kg。研究认为,最大飞行马赫数为5~6的高超声速冲压发动机采用亚燃是可行的。

本文引用格式

段晰怀 , 郑日恒 , 李立翰 . 基于亚燃的高超声速冲压发动机内流道研究[J]. 航空学报, 2015 , 36(1) : 232 -244 . DOI: 10.7527/S1000-6893.2014.0236

Abstract

To explore the performance of subsonic combustion ramjet working at hypersonic incoming flow conditions, the matching of internal flowpath of a ramjet based on dump combustion chamber is studied. The performance of the engine is obtained by means of integrated performance computation and fluid dynamics simulation. The results indicate that the designed subsonic combustion ramjet has good performance at hypersonic incoming flow conditions and works well. At the booster-to-ramjet transition point with Mach number Ma=3.5, altitude H=12 km, the thrust coefficient has its maximum value of 0.649 and the specific impulse is 13 801.2 N·s/kg. At the cruising condition with Mach number Ma=5.0, altitude H=21 km, excess air coefficient α=1.8, its specific impulse has its maximum value of 12 574.0 N·s/kg, and the thrust coefficient is 0.370. This study shows that the hypersonic ramjet with subsonic combustion for the maximum incoming Mach number between 5 and 6 is feasible.

参考文献

[1] Roux A, Gicquel L Y M, Reichstadt S, et al. Analysis of unsteady reacting flows and impact of chemistry description in large eddy simulations of side-dump ramjet combustors[J]. Combustion and Flame, 2010(157): 176-191.

[2] Handa T, Miyachi H, Kakuno H, et al. Generation and propagation of pressure waves in supersonic deep cavity flows[J]. Experiments in Fluids, 2012, 3(6): 1855-1866.

[3] Liu X Z. Power pack of cruise missile[M]. Beijing: China Astronautic Publishing House, 2005 (in Chinese). 刘兴洲.飞航导弹动力装置[M]. 北京: 中国宇航出版社, 2005.

[4] Fry R S. A century ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.

[5] Yu G,Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese). 俞刚, 范学军. 超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5): 449-471.

[6] Zetterstrom K A, Sjoblom B. An experimental study of side dump ramjet combustors, ISABE-85-7024[R]. Cincinnati: ISABE, 1985.

[7] Stull F D, Craig R R, Streby G D, et al. Investigation of a dual inlet side dump combustor using liquid duel injecti-on, AIAA-1983-0420[R]. Reston: AIAA, 1983.

[8] Alard P. Fuel injection system for ramjet engine: USA,U.S. P, 4852348 [P]. 1988.

[9] Qiu X Y, Gong B Q. An experimental investigation on the combustor with bypass flom in integral liquid fuel ramjet[J]. Journal of Propulsion Technology, 1992(5): 18-24(in Chinese). 邱新宇, 宫本泉. 整体式液体冲压发动机分流方案燃烧室试验研究[J]. 推进技术, 1992(5): 18-24.

[10] Chen J M. Numerical simulation of dump combustion chamber of side inlet ramjet[D]. Beijing: Beijing Power Machinery Institute, 2007 (in Chinese). 陈静敏. 旁侧进气冲压发动机突扩燃烧室流场数值模拟[D]. 北京: 北京动力机械研究所, 2007.

[11] Chen J M, Li Z Y, Wang D Y, et al. Combustion performace study of side dump heater[J]. Journal of Propulsion Technology, 2013, 34(12): 1677-1681 (in Chinese). 陈静敏, 李志永, 王登云, 等. 旁侧突扩加热器燃烧性能研究[J].推进技术, 2013, 34(12): 1677-1681.

[12] Laruelle G. Synthesis of aerodynamic studies of air intake of a highly manoeuvring missile athigh mach numbers, ISABE-85-7011[R]. Cincinnati: ISABE, 1985.

[13] Wang F J. Computational fluid dynamics analysis: the principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2001 (in Chinese). 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2001.

[14] Jin Z G, Zhang K Y. Concept of a two-dimensional supersonic/hypersonic inlet with a non-conventional compression wall[J]. Journal of Propulsion Technology, 2004, 25(3): 226-229 (in Chinese). 金志光, 张堃元. 二维非常规压缩型面超/高超声速进气道的设计概念[J]. 推进技术, 2004, 25(3): 226-229.

[15] Emery J C, Sterett J R. Experimental separation studies for two-dimensional wedges and curved surfaces at mach numbers of 4.8 to 6.2, NASA TN D-1014[R]. Washington, D.C.: NASA, 1962.

[16] Jin Z G, Zhang K Y. A variable geometry scramjet inlet with a translating cowl operating in a large mach number range[J]. Journal of Astronautics, 2010, 31(5): 1503-1510 (in Chinese). 金志光, 张堃元. 宽马赫数范围高超声速进气道伸缩唇口式变几何方案[J]. 宇航学报, 2010, 31(5): 1503-1510.

[17] Ju Y. Design of curved shock compression surface and experimental investigation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese). 居燕. 弯曲激波压缩面设计及试验研究[D]. 南京: 南京航空航天大学, 2005.

[18] Wang X J. Spacecraft enter and return (Part II)[M]. Beijing: China Aerospace Press, 1991 (in Chinese). 王希季. 航天器进入与返回技术(下册)[M]. 北京: 宇航出版社, 1991.

文章导航

/