总体气动与综合

高超声速飞行的若干气动问题

  • 余平 ,
  • 段毅 ,
  • 尘军
展开
  • 空间物理重点实验室, 北京 100076
余平 男,硕士,研究员。主要研究方向:空气动力学。 Tel: 010-68198491 E-mail: yupingbj@vip.sina.com;段毅 男,博士,研究员。主要研究方向:空气动力学,计算流体力学;尘军 男,博士,研究员。主要研究方向:飞行器总体、动力设计。

收稿日期: 2014-07-25

  修回日期: 2014-10-17

  网络出版日期: 2014-10-20

基金资助

国家自然科学基金 (11372036)

Some aerodynamic issues in hypersonic flight

  • YU Ping ,
  • DUAN Yi ,
  • CHEN Jun
Expand
  • Science and Technology on Space Physics Laboratory, Beijing 100076, China

Received date: 2014-07-25

  Revised date: 2014-10-17

  Online published: 2014-10-20

Supported by

National Natural Science Foundation of China(11372036)

摘要

转捩、层流流动分离和气动误差带是高超声速飞行需要关注的几个气动问题。转捩与层流流动分离会对飞行器的气动特性产生显著的扰动,且这种扰动存在一定的不确定性;而如何合理地确定飞行器的气动误差带也是高超声速飞行的一个关键。本文主要从工程设计的角度对这些气动问题及其影响进行了论述,提出为满足高超声速飞行的需求,仍应针对所关注的问题发展相关的理论分析与数值模拟技术,进一步提升地面风洞试验的技术水平,并强调了开展相关气动飞行试验的重要性。

本文引用格式

余平 , 段毅 , 尘军 . 高超声速飞行的若干气动问题[J]. 航空学报, 2015 , 36(1) : 7 -23 . DOI: 10.7527/S1000-6893.2014.0224

Abstract

Transition, laminar flow separation and aerodynamic error band are some aerodynamic issues which should be paid more attention to for hypersonic flight. The aerodynamic properties may be influenced obviously and with some uncertainty by transition and laminar flow separation. And how to determine the aerodynamic error band reasonably is also a key for hypersonic flight. These issues and their influences are discussed in this paper mainly from the view point of engineering design. To fulfill the need of hypersonic flight, we should further develop the relevant theoretical analysis and digital simulation technology and raise the technical level of ground tests at wind tunnel. Besides, aerodynamic flight tests should also be emphasized.

参考文献

[1] Wagnild R M. High enthalpy effects on two boundary layer disturbances in supersonic and hypersonic flow[D]. Minneapolis, MN: The University of Minnesota, 2012.
[2] An M Y, Wang K C, Campbell C H, et al. Space shuttle orbiter aerodynamics induced by asymmetric boundary-layer transition, AIAA-1996-0808 [R]. Reston: AIAA, 1996.
[3] Juliano T J . Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[D]. Washington, D.C.: Purdue University, 2006.
[4] Odam J, Paull A, Alesi H, et al. HIFiRE-0 flight test data, AIAA-2009-7293 [R]. Reston: AIAA, 2009.
[5] Kimmel R L, Adamczak D W. HIFiRE-1 preliminary aerothermodynamic measurements (postprint), AFRL-RB-WP-TP-2012-0197[R]. Ohio: AFRL, 2012.
[6] Li F, Meelan C, Chang C L, et al. Transition analysis for the HIFiRE-1 flight experiment, AIAA-2011-3414[R]. Reston: AIAA, 2011.
[7] Kimmel R, Adamczak D, Gosse R, et al. Ground test and computation of boundary layer transition on the hypersonic international flight research and experimentation (HIFiRE)-5 vehicle, AFRL-RB-WP-TR-2011-3025[R]. Ohio: AFRL, 2011.
[8] Choudhari M, Chang C L, Thomas J, et al. Transition analysis for the HIFiRE-5 vehicle, AIAA-2009-4056 [R]. Reston: AIAA, 2009.
[9] Borg M P, Kimmel R L, Stanfield S. Traveling crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel, AIAA-2013-2717[R]. Reston: AIAA, 2013.
[10] Chen F J, Berry S A. HyBoLT flight experiment, NASA/TM-2010-216725[R]. Washington, D.C.: NASA, 2010.
[11] Horvath T M, Berry S A, Merski N R, et al. X-38 experimental aerothermodynamics, AIAA-2000-2685[R]. Reston: AIAA, 2000.
[12] Baiocco P. Pre-X experimental re-entry lifting body: design of flight test experiments for critical aerothermal phenomena[R]. Evry Cedex: Center National D'Etudes Spatiales, 2007.
[13] Holden M S. Historical review of experimental studies and prediction methods to describe laminar and turbulent shock wave/boundary layer interactions in hypersonic flows, AIAA-2006-0494[R]. Reston: AIAA, 2006.
[14] Vandomme L, Chanetz B, Benay R, et al. Shock wave/transitional boundary-layer interactions in hypersonic flow, AIAA-2003-6966[R]. Reston: AIAA, 2003.
[15] Holden M S, Wadhams T P, Candler G V. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows, AIAA-2004-0916[R]. Reston: AIAA, 2004.
[16] Holden M S, Wadhams T P, Smolinski G J, et al. Experimental and numerical studies on hypersonic vehicle performance in the LENS shock and expansion tunnels, AIAA-2006-0125[R]. Reston: AIAA, 2006.
[17] Wadhams T P, Holden M S. Summary of experimental studies for code validation in the LENS facility and comparison with recent Navier-Stokes and DSMC solutions for two- and three-dimensional separated regions in hypervelocity flows, AIAA-2004-0917[R]. Reston: AIAA, 2004.
[18] Rockwell International. Aerodynamic design data book—Volume 1M: Orbiter vehicle STS-1, NASA-CR-160903[R]. Washington, D.C.: NASA, 1980.
[19] Morelli E A, Derry S D, Smith M S. Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data, AIAA-2005-5921[R]. Reston: AIAA, 2005.
[20] Young J C, Underwood J M. Development of aerodynamic uncertainties for the space shuttle orbiter[J]. Journal of Spacecraft, 1983, 20(6): 513-517.
[21] Cobleigh B R. Development of the X-33 aerodynamic uncertainty model, NASA/TP-1998-206544[R]. Washington, D.C.: NASA, 1998.
文章导航

/