机器人自动制孔中绝对定位误差的分析与补偿
收稿日期: 2014-07-14
修回日期: 2014-10-07
网络出版日期: 2014-10-20
基金资助
国家自然科学基金 (51275463); 中央高校基本科研业务费专项资金 (2014FZA4003)
Analysis and compensation for absolute positioning error of robot in automatic drilling
Received date: 2014-07-14
Revised date: 2014-10-07
Online published: 2014-10-20
Supported by
National Natural Science Foundation of China (51275463); Fundamental Research Funds for the Central Universities (2014FZA4003)
由于机器人绝对定位精度相对较低,无法直接满足自动制孔的孔位精度要求。为了提高机器人自动制孔的孔位精度,对机器人绝对定位误差进行了研究。首先,阐述了绝对定位误差的来源和产生过程,并通过理论分析和相关试验,证明了绝对定位误差会对机器人基坐标系的平移分量和姿态变换分量产生不同程度的影响。然后,为了补偿由于基坐标系标定不准确所引起的坐标转换误差,从飞机曲面构造原理角度,提出了一种基于误差Coons曲面函数的补偿方法。制孔试验表明,采用基于误差Coons曲面函数的补偿方法,可以使得坐标转换误差得到有效的补偿。机器人自动制孔的孔位平均位置误差为0.205 mm,最大位置误差为0.343 mm,满足孔位精度在0.5 mm以内的要求,实现了机器人自动化精确制孔。
董辉跃 , 周华飞 , 尹富成 . 机器人自动制孔中绝对定位误差的分析与补偿[J]. 航空学报, 2015 , 36(7) : 2475 -2484 . DOI: 10.7527/S1000-6893.2014.0273
Due to the relatively low absolute positioning accuracy of robot, the required accuracy of drilled holes could not be directly met without compensation during robot automatic drilling. In order to improve the accuracy, the absolute positioning error of robot is researched. Firstly,this article discusses the error sources and generating processes. And through theoretical analysis and relevant experiment, we found that the absolute positioning error would have different influences on translation component and rotation component of calibration result of robot base coordinate system. Secondly, in order to compensate for the coordinate converted error caused by calibration inaccuracy of base coordinate system, a new method based on constructing error Coons surface function is proposed from the standpoint of aircraft surface construction principle. And the validity of the new method is experimentally verified through robot automatic drilling. Results show that the average error of holes is 0.205 mm and the maximum error is less than 0.343 mm, which must be controlled under 0.5 mm. The required accuracy of robot automatic drilling is realized.
[1] Fan Y Q. Overview of digital assembly technology for aircraft[J]. Aeronautical Manufacturing Technology, 2006(10): 44-48 (in Chinese). 范玉青. 飞机数字化装配技术综述[J]. 航空制造技术, 2006(10): 44-48.
[2] Qu W W, Hou P H, Yang G J, et al. Study on the stiffness performance for robot machining system[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2823-2832 (in Chinese). 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12): 2823-2832.
[3] He S Q. Digital assembly technologies and equipments of the jumbo aircraft[M]. Beijing: Aviation Industry Press, 2013: 264-272 (in Chinese). 何胜强. 大型飞机数字化装配技术与装备[M]. 北京: 航空工业出版社, 2013: 264-272.
[4] Sulzer J, Kovac I. Enhancement of positioning accuracy of industrial robots with a reconfigurable fine positioning module[J]. Precision Engineering, 2010, 34(2): 201-217.
[5] Du G G, Zhang P. Online robot calibration based on vision measurement[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(6): 484-492.
[6] Lu T F, Lin G. An online relative position and orientation error calibration methodology for work cell robot operations[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(2): 89-99.
[7] Dolinsky J U, Jenkinson I D, Colquhoun G J. Application of genetic programming to the calibration of industrial robots[J]. Computers in Industry, 2007, 58(3): 255-264.
[8] Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 236-245.
[9] Zhu W D, Qu W W, Cao L H. An off-line programming system for robotic drilling in aerospace manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9): 2535-2545.
[10] Yang G L, Kong L F, Wang J. A new calibration approach to hand-eye relation of manipulator[J]. Robot, 2006, 28(4): 400-405 (in Chinese). 杨广林, 孔令富, 王洁. 一种新的机器人手眼关系标定方法[J]. 机器人, 2006, 28(4): 400-405.
[11] Ding X L, Zhou L L, Zhou J. Pose error analysis of robot in three dimensions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 241-245 (in Chinese). 丁希仑, 周乐来, 周军. 机器人的空间位姿误差分析方法[J]. 北京航空航天大学学报, 2009, 35(2): 241- 245.
[12] Liu M Y, Huang J X, Ye Q G. A general method of calculating accuracy and its application to mechanical structure and system[J]. Robot, 1992, 14(4): 18-24 (in Chinese). 刘密英, 黄家贤, 叶琪根. 机械结构与系统精度通用计算法及其应用[J]. 机器人, 1992, 14(4): 18-24.
[13] Ren Y J, Zhu J G, Yang X Y, et al. Method of robot calibration based on laser tracker[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 195-200 (in Chinese). 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9): 195-200.
[14] Gan Z X, Tang Q. Visual sensing and its applications: integration of laser sensors to industrial robots[M]. Hangzhou: Zhejiang University Press, 2011: 93-188.
[15] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
[16] Tian W, Zhou W X, Zhou W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[17] Zhu X X. Free curves and surfaces modeling technology. Beijing: Science Press, 2000: 57-59 (in Chinese). 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 57-59.
[18] Qu W W, Dong H Y, Ke Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960 (in Chinese). 曲巍葳, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10): 1951-1960.
[19] Wikipedia. Euler angles[EB/OL]. (2011-10-23). [2014-09-17]. http://en.wikipedia.org/wiki/TaitBryan_angles#Tait. E2.80.93Bryan_angles.
/
〈 | 〉 |