(高)超声速流动试验技术及研究进展
收稿日期: 2014-06-04
修回日期: 2014-10-08
网络出版日期: 2014-10-09
基金资助
国家自然科学基金 (11172326);国家"973"计划(2009CB724100)
Progress on experimental techniques and studies of hypersonic/supersonic flows
Received date: 2014-06-04
Revised date: 2014-10-08
Online published: 2014-10-09
Supported by
National Natural Science Foundation of China (11172326); National Basic Research Program of China (2009CB724100)
近年来,与高速飞行器相关的(高)超声速流动受到了极大的关注。这类流动所具有的非定常性、强梯度和可压缩性对试验方法和风洞设计技术提出了挑战。超声速纳米示踪平面激光散射(NPLS)技术是由作者所在团队研发的非接触光学测试技术。它能够以较高的空间分辨率来揭示超声速三维流场的一个瞬态剖面的时间解析的流动结构。介绍了NPLS技术以及基于NPLS开发的密度场测量、雷诺应力测量和气动光学波前测量等方法,并回顾了这些技术在超声速边界层、超声速混合层、超声速压缩拐角、激波/边界层相互作用和光学头罩绕流等流动中的应用,清晰地再现了边界层、混合层、激波等典型流场结构及其时空演化特性。另外,为了模拟和研究高空大气条件下边界层自然转捩和超声速混合层的转捩特性,介绍了高超声速静风洞、超-超混合层风洞的设计技术以及层流化喷管的设计方法。
易仕和 , 陈植 , 朱杨柱 , 何霖 , 武宇 . (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015 , 36(1) : 98 -119 . DOI: 10.7527/S1000-6893.2014.0230
The research of flows associated with the hypersonic aircraft has aroused more and more attention. Experimental techniques and wind tunnel designing methods are challenged when applied to these flows, due to the unstableness, intensive gradients and compression effects. Supersonic nano-tracer planar scattering (NPLS) technique is a non-intrusive optic measuring method proposed by the author's research group. It can reveal structures of a transient cross-section of supersonic three-dimensional flow field at high spatial and temporal resolution. In this paper, techniques are introduced including NPLS, density measurement, Reynolds stress measurement, aero-optic wavefront measurement based on NPLS. Applications of these techniques on supersonic boundary layer, supersonic mixing layer, supersonic compression-corner flow, shock/boundary layer interaction and supersonic flow passing over an optic cowl are reviewed. Typical flow structures such as boundary layer, mixing layer and shock wave are revealed along with the corresponding temporal evolution characteristics. In addition, to simulate and study the nature transition of boundary layer in the atmospheric conditions and to study supersonic mixing layer transition, the design of hypersonic quiet wind tunnel and supersonic mixing layer wind tunnel are introduced along with the laminarized nozzle designing.
[1] Schneider S P, Juliano T J, Hannon M. Laminar-turbulent transition measurements in the Boeing/AFOSR Mach-6 quiet tunnel,AIAA-2007-4489[R]. Reston: AIAA, 2007.
[2] Laufer J, Vrebalovich T. Stability and transition of a supersonic laminar boundary layer on an insulated at plate[J]. Journal of Fluid Mechanics, 1960(9): 257-299.
[3] Blanchard A E, Selby G V. An experimental investigation of wall-cooling effects on hypersonic boundary-layer stability in a quiet wind tunnel, NASA-CR-198287[R]. Washington, D.C.: NASA, 1996.
[4] Yi S H, Tian L F, Zhao Y X, et al. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advance in Mechanics, 2011, 41(4): 379-390(in Chinese). 易仕和, 田立丰, 赵玉新, 等. 基于NPLS技术的可压缩湍流机理实验研究新进展[J]. 力学进展, 2011, 41(4): 379-390.
[5] Yi S H, He L, Tian L F, et al. The application of nano-tracer planar laser scattering in shock wave field measurement[J]. Advance in Mechanics, 2012, 42(2): 197-205(in Chinese). 易仕和, 何霖, 田立丰, 等. 纳米示踪平面激光散射技术在激波复杂流场测量中的应用[J]. 力学进展, 2012, 42(2): 197-205.
[6] Chen Z. Turbulent structure measurements and the relative technique researches of supersonic flow over a backward facing step[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 陈植. 超声速后台阶湍流结构试验及其相关技术研究[D]. 长沙: 国防科学技术大学, 2010.
[7] Zhao Y X, Yi S H, Tian L F. Supersonic flow imaging via nanoparticles[J]. Science in China Series E: Technological Sciences, 2009, 52(12): 3640-3648.
[8] Zhao Y X. Experimental investigation of spatiotemporal structures of supersonic mixing layer[D]. Changsha: National University of Defence Technology, 2008 (in Chinese). 赵玉新. 超声速混合层时空结构的实验研究[D]. 长沙: 国防科学技术大学, 2008.
[9] Tian L F, Yi S H, Zhao Y X. Study of density field measurement based on NPLS technique in supersonic flow[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2009, 52(9): 1357-1363.
[10] Chen Z, Yi S H, Zhou Y W. Design of a hypersonic quiet wind tunnel nozzle based the throat boundary layer suction[C]//Proceedings of the 14th Chinese National Symposium on Shock Waves. Huangshan: [s.n.], 2010: 443-448(in Chinese). 陈植, 易仕和, 周勇为. 基于喉部边界层抽吸高超声速静风洞喷管设计[C]//第十四届全国激波与激波管学术会议.黄山: [s.n.], 2010: 443-448.
[11] He L, Yi S H, Zhao Y X, et al. Experimental study of a supersonic turbulent boundary layer using PIV[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2011, 54(9): 1702-1709.
[12] He L, Yi S H, Zhao Y X, et al. Visualization of coherent structures in a supersonic flat-plate boundary layer[J]. Chinese Science Bulletin, 2011, 56(6): 489-494.
[13] He L. Experimental investigation of supersonic boundary layer and shock wave/boundary layer interaction[D]. Changsha: National University of Defense Technology, 2011 (in Chinese). 何霖. 超声速边界层及激波与边界层相互作用的实验研究[D]. 长沙: 国防科学技术大学, 2011.
[14] Zhao Y X, Tian L F, Yi S H. Experimental study of flow structure in pressure unmatched mixing layer[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 14-17.
[15] Zhao Y X, Yi S H, Tian L F. The quantificational measurement of supersonic mixing layer growth rate[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 100-103.
[16] Zhao Y X, Yi S H, He L. The fractal measurement of experimental images of supersonic turbulent mixing layer[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2008, 51(8): 1134-1143.
[17] Zhao Y X, Yi S H, He L. The experimental research of shocklet in supersonic turbulent mix layer[J]. Journal of National University of Defense Technology, 2007, 29(1): 12-15.
[18] Zhao Y X, Yi S H, He L. The experimental study of interaction between shock wave and turbulence[J]. Chinese Science Bulletin, 2007, 52(10): 1297-1301.
[19] Yi S H, He L, Zhao Y X. A flow control study of a supersonic mixing layer via NPLS[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2009, 52(12): 2001-2006.
[20] Zhao Y X, Yi S H, Tian L F. Multiresolution analysis of density fluctuation in supersonic mixing layer[J]. Science in China Series E: Technological Sciences, 2010, 53(2): 584-591.
[21] Yi S H, He L, Tian L F, et al. Progress and prospect of the experimental researches on supersonic turbulent mechanism[C]//Proceedings of the 14th Chinese National Symposium on Shock Waves. Huangshan: [s.n.], 2010: 29-43(in Chinese). 易仕和, 何霖, 田立丰, 等. 超声速湍流机理实验研究—进展与展望[C]//第十四届全国激波与激波管学术会议. 黄山: [s.n.], 2010: 29-43.
[22] Wu Y, Yi S H, Chen Z, et al. Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp[J]. Acta Physica Sinica, 2013, 62(18): 184702 (in Chinese) 武宇, 易仕和, 陈植, 等. 超声速层流/湍流压缩拐角流动结构的实验研究[J]. 物理学报, 2013, 62(18): 184702.
[23] Quan P C, Yi S H, Wu Y, et al. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave[J]. Acta Physica Sinica, 2014, 63(8): 084703 (in Chinese). 全鹏程, 易仕和, 武宇, 等. 激波与层流/湍流边界层相互作用实验研究[J]. 物理学报, 2014, 63(8): 084703.
[24] Li G C. Aero-optics[M]. Beijing: National Defence Industry Press, 2006 (in Chinese). 李桂春. 气动光学[M]. 北京: 国防工业出版社, 2006.
[25] Neal D R, Copland J, Neal D. Shack-Hartmann wavefront sensor precision and accuracy[C]//Proceedings of SPIE, Angela Duparr Bhanwar Singh Seattle. 2002: 148-160.
[26] Jumper E J, Fitzgerald E J. Recent advances in aero-optics[J]. Progress in Aerospace Sciences, 2001, 37(3): 299-339.
[27] Sourgen F, Haertig J, Rey C. Comparison between background oriented schlieren measurements (B.O.S.) and numerical simulations, AIAA-2004-2602[R]. Reston: AIAA, 2004.
[28] Yi S H, Tian L F, Zhao Y X. Aero-optical aberration measuring method based on NPLS and its application[J]. Chinese Science Bulletin, 2010, 55(31): 3545-3549.
[29] Zhao Y X, Yi S H, Tian L F, et al. An experimental study of aero-optical aberration and dithering of supersonic mixing layer via BOS[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2010, 53(1): 81-94.
[30] Yi S H, Hou Z X, Zhao Y X. The optimization study of optical performance of shear layer in free-vortex ADW[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(2): 47-49 (in Chinese). 易仕和, 侯中喜, 赵玉新. 超声速自由涡气动窗口剪切层光学性能的优化设计研究[J]. 流体力学实验与测量, 2004, 18(2): 47-49.
[31] Tian L F, Yi S H, Zhao Y X, et al. Aero-optical wave front measurement technique based on BOS and its applications[J]. Chinese Science Bulletin, 2011, 56(22): 2320-2326.
[32] Zhao Y X, Yi S H, Tian L F, et al. Density field measurement and approximate reconstruction of supersonic mixing layer[J]. Chinese Science Bulletin, 2010, 55(19): 2004-2009.
[33] Tian L F, Yi S H, Zhao Y X. PIV study of supersonic flow around an optical bow cap[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 26-29.
[34] Tian L F, Yi S H, Zhao Y X. Flow visualization of supersonic flow around a concave optical bow cap model[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 15-17.
/
〈 |
|
〉 |