吸气式高超声速飞行器大迎角气动特性分析
收稿日期: 2014-06-04
修回日期: 2014-09-22
网络出版日期: 2014-10-08
基金资助
国家自然科学基金 (91216102, 11402014)
Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack
Received date: 2014-06-04
Revised date: 2014-09-22
Online published: 2014-10-08
Supported by
National Natural Science Foundation of China (91216102, 11402014)
吸气式高超声速飞行器在飞行过程中受到大气紊流等外部干扰的作用时,飞行姿态很可能会出现大迎角情况。针对大迎角飞行时飞行器可能出现的气动问题,对一种典型吸气式高超声速飞行器的流场进行了数值模拟。以雷诺平均Navier-Stokes(RANS)方程为控制方程,采用标准k-ε湍流模型求解,得到其流场特征和气动特性。重点针对大迎角情况,分别对整机气动特性、进气道性能和全动尾翼气动性能进行了分析,并结合流场特征作出解释。结果表明,机身和发动机之间存在气动/推进耦合现象。大迎角下飞行器的气动参数表现出非线性特性,升阻比减小,整机纵向表现为静不稳定,且不稳定性随迎角增大而增大;进气道性能在大迎角下降低,从而导致发动机推力下降,不利于发动机的正常工作,但却适当降低了整机的纵向静不稳定度;全动尾翼操纵效率降低从而使得配平难度增大。
罗文莉 , 李道春 , 向锦武 . 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015 , 36(1) : 223 -231 . DOI: 10.7527/S1000-6893.2014.0266
During the flight of air-breathing hypersonic vehicles, the atmospheric turbulence or other external disturbances may result in high angle of attack conditions. In order to study the aerodynamic performances influenced by high angle of attack, numerical simulations are performed on the flow field of a typical air-breathing hypersonic vehicle. The flow field and aerodynamic characteristics are obtained by solving the Reynolds-averaged Navier-Stokes (RANS) equations using standard k-ε turbulence models. The performances of vehicle, inlet and the all-moving tails are analyzed and explained based on the flow field characteristics especially at high angle of attack. The investigation indicates that there is coupling between aerodynamics and propulsive system. At high angle of attack, aerodynamic parameters exhibit nonlinear characteristics, meanwhile, the lift-to-drag ratio begins to reduce and the longitudinal instability enhances. The inlet has poor performance at high angle of attack, resulting in the decrease of thrust provided by the engine, which is not conducive to the normal operation of the engine. However, on the other hand, the decrease of thrust will reduce the longitudinal instability of the vehicle. In addition, the control efficiency of the all-moving tails reduces and consequently makes trimming difficult.
Key words: air-breathing; hypersonic; numerical simulation; high angle of attack; inlet; tail
[1] Yentsch R J, Gaitonde D V, Kimmel R. Performance of turbulence modeling in simulation of the HIFiRE-1 flight test[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 117-127.
[2] Murphy K J, Nowak R J, Thompson R A, et al. X-33 hypersonic aerodynamic characteristics[J].Journal of Spacecraft and Rockets, 2001, 38(5): 670-683.
[3] Engelund W C, Holland S D, Cockrell C E, et al. Aerodynamic database development for the Hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810.
[4] Holland S D, Woods W C, Engelund W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 828-835.
[5] Fan X Q, Li H, Jia D, et al. Experimental investigation on forced boundary-layer transition of axisymmetric inlet and numerical verification[J]. Journal of Aircraft, 2006, 43(5): 1544-1549.
[6] Skujins T, Cesnik C E S, Oppenheimer M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 90-100.
[7] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808(in Chinese). 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.
[8] Zeng K C, Xiang J W, Li D C. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2013, 26(4): 831-840.
[9] Xiang J W, Zeng K C, Nie L. Elastic effects on flight mechanics of waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1306-1310 (in Chinese). 向锦武, 曾开春, 聂璐. 考虑弹性影响的乘波体飞行动力学特性[J]. 北京航空航天大学学报, 2012, 38(10): 1306-1310.
[10] Gupta K K, Voelker L S. Aeroelastic simulation of hy-personic flight vehicles[J]. AIAA Journal, 2012, 50(3): 717-723.
[11] Chen Q, Si F F, Chen J Q, et al. Study of protuberance in supersonic flow with RANS/LES method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1531-1537 (in Chinese). 陈琦, 司芳芳, 陈坚强, 等. RANS/LES 在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7): 1531-1537.
[12] Cui K, Hu S, Li G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China Technological Sciences, 2013, 56(8): 1980-1988.
[13] Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4): 832-838.
[14] Taguchi H, Kobayashi H, Kojima T, et al. Research on hypersonic aircraft using pre-cooled turbojet engines[J]. Acta Astronautica, 2012, 73(1): 164-172.
[15] Mirmirani M, Wu C, Clark A, et al. Modeling for con-trol of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco: AIAA, 2005: 6256.
[16] Li S X. Typical hypersonic flow characteristics[M]. Beijing: National Defence Industry Press, 2007: 18-39(in Chinese). 李素循. 典型外形高超声速流动特征[M]. 北京: 国防工业出版社, 2007: 18-39.
[17] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
/
〈 | 〉 |