基于反步法的航天器有限时间姿态跟踪容错控制
收稿日期: 2014-06-10
修回日期: 2014-07-24
网络出版日期: 2014-09-26
基金资助
国家自然科学基金 (61174200, 61273175)
Backstepping-based finite-time fault-tolerant attitude tracking control for spacecraft
Received date: 2014-06-10
Revised date: 2014-07-24
Online published: 2014-09-26
Supported by
National Natural Sciednce Foundation of China (61174200, 61273175)
针对存在外部干扰、控制饱和以及执行器故障的航天器姿态跟踪控制问题,提出了基于反步法的有限时间控制方案。通过引入一类新型的具有有限时间收敛特性的积分式滑模面,设计了满足多约束的有限时间容错姿态跟踪控制器,并利用参数自适应方法使控制器设计不依赖于系统惯量信息和外部干扰的界。该容错控制方案的设计无需在线故障信息检测、分离甚至控制器重构,并显式地考虑了执行器输出的饱和幅值要求。稳定性分析表明:在控制饱和甚至执行器故障等多约束的条件下,本文所设计的控制器不仅保证了姿态跟踪的有限时间收敛性,且对于执行器故障具有优越的容错能力;数值仿真分析进一步验证了该控制器的控制性能,以及对外部干扰和系统不确定性的鲁棒性。
王辉 , 胡庆雷 , 石忠 , 高庆吉 . 基于反步法的航天器有限时间姿态跟踪容错控制[J]. 航空学报, 2015 , 36(6) : 1933 -1939 . DOI: 10.7527/S1000-6893.2014.0215
Backstepping-based finite-time control strategies are investigated for spacecraft attitude tracking subject to external disturbances, control saturation and actuator faults. A finite-time fault-tolerant attitude tracking controller is developed by introducing a novel integral-type sliding mode with finite-time convergence, and it is further shown that the controller is independent from a prior knowledge of spacecraft inertia or bound of external disturbances with parameter adaptations. It is important to note that the designed fault-tolerant controller does not require any fault information detection, isolation online even controller reconstruction, and saturation magnitude of actuator output is explicitly taken into account. The stability analysis shows that the finite-time convergence of spacecraft attitude tracking can be ensured by the designed controller with superior fault tolerant capability for actuator faults, even with respect to the multi-constraints such as control saturation and even faults. The control performance of the proposed controller is further evaluated through the numerical simulation analysis, with the robustness to external disturbances and system uncertainties.
Key words: spacecraft; attitude tracking; backstepping; finite-time; actuator faults
[1] Luo W, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1639-1654.
[2] Hu Q L, Friswell M I. Robust variable structure attitude control with L2-gain performance for a flexible space-craft including input saturation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Systems and Control Engineering, 2010, 224(2): 153-167.
[3] Chen Z, Huang J. Attitude tracking and disturbance rejec-tion of rigid spacecraft by adaptive control[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 600-605.
[4] Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 254-259.
[5] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 957-963.
[6] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.
[7] Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252.
[8] Cieslak J, Henry D, Zolghadri A. Development of an active fault-tolerant flight control strategy[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 135-147.
[9] Zhang X D, Parisini T, Polycarpou M M. Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach[J]. IEEE Transactions on Automatic Control, 2004, 49(8): 1259-1274.
[10] Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1456-1463.
[11] Xiao B, Hu Q L, Zhang Y M. Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 838-849.
[12] Hu Q L, Xiao B, Friswell M I. Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation[J]. IET Control Theory & Applications, 2011, 5(2): 271-282.
[13] Hu Q L, Zhang Y M, Huo X, et al. Adaptive integral-type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures[J]. Chinese Journal of Aeronautics, 2011, 24(1): 32-45.
[14] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766.
[15] Ding S H, Li S H. Finite time tracking control of spacecraft attitude[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 628-633 (in Chinese). 丁世宏, 李世华. 空间飞行器姿态的有限时间跟踪控制方法[J]. 航空学报, 2007, 28(3): 628-633.
[16] Zhu Z, Xia Y Q, Fu M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[17] Lu K F, Xia Y Q. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations[J]. IET Control Theory & Applications, 2013, 7(11): 1529-1539.
[18] Wu S N, Radice G, Gao Y S, et al. Quaternion-based finite time control for spacecraft attitude tracking[J]. Acta Astronautica, 2011, 69(1): 48-58.
[19] Hu Q L, Jiang B Y, Shi Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 249-258 (in Chinese). 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1): 249-258.
[20] Sidi M J. Spacecraft dynamics and control[M]. London: Cambridge University Press, 1997.
/
〈 | 〉 |