弯曲通道模拟离心条件下的主燃级和预燃级联焰试验
收稿日期: 2013-12-25
修回日期: 2014-07-04
网络出版日期: 2014-09-26
Experiment of flame crossover between main stage and pilot stage under centrifugal force effect in curved duct
Received date: 2013-12-25
Revised date: 2014-07-04
Online published: 2014-09-26
冲压转子发动机是冲压发动机和燃气涡轮发动机的有机结合,其结构简单。冲压转子发动机燃烧室由于其内部受到强离心力场的作用,燃烧室火焰的稳定燃烧以及传播都会受其影响。为了得到离心力场对分级燃烧中两级联焰的影响规律,本文进行了试验研究工作。针对燃烧室在强离心条件下的燃烧特点,采用弯曲通道模拟气流的离心效应。在弯曲试验段上对预燃级和主燃级进行了联焰研究,试验在常温常压条件下进行,进口气流速度范围为10~70 m/s。试验中考察了离心力、燃油分级比例以及主燃级燃油喷射初始角度对联焰的影响,试验结果初步验证了燃烧方案的可行性,为冲压转子发动机燃烧室的研究奠定了基础。
李林 , 林宇震 , 张弛 . 弯曲通道模拟离心条件下的主燃级和预燃级联焰试验[J]. 航空学报, 2015 , 36(2) : 484 -491 . DOI: 10.7527/S1000-6893.2014.0136
The ram rotor engine is a novel technology combined of ramjet engines and gas turbine engines, having simple configuration. The flame stability and propagation are under strong effects of centrifugal force in the combustor of ram rotor engine. Experimental research work is carried out to study the effects of centrifugal force on the flame crossover between two stages. According to the characteristics of combustion under centrifugal force, a curved duct is used to simulate the centrifugal effect. Tests of flame crossover between pilot stage and main stage are carried out under ambient pressure and temperature, with the inlet air velocity ranging from 10 m/s to 70 m/s. The effects of centrifugal force, fuel allocation proportion and fuel injection initial angle on the flame crossover are investigated in the tests. The results of tests preliminarily verify the feasibility of this combustion scheme and lay a foundation for the research of ram rotor engine combustor.
Key words: centrifugal force; flame crossover; combustor; ignition; lean blowout limit
[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.
[2] Holcomb F H, Sohn C W, Tamm G, et al. Ramgen power systems for military engine applications, ADA478293[R]. 2007.
[3] Lawlor S P. Apparatus and method for fuel-air mixing before supply of low pressure lean premix to combustor for rotating ramjet engine driving a shaft: U.S. 6263660 [P]. 2001-07-24.
[4] Lawlor S P, Kushnick S B. Compact rotary ramjet engine with rapidly interchangeable cartridge containing hot section rotating elements:U.S. 20030014961[P]. 2001-07-23.
[5] Lawlor S P. Method and apparatus for power generation using rotating ramjets: U.S. 6347507[P]. 2002-02-19.
[6] Lawlor S P. Ramjet engine for power generation: U.S. 6446425[P]. 2002-09-10.
[7] Koopman A. Ramgen rotor cartridge for the pre-prototype ramgen engine, FC26-00NT40915[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2003.
[8] Sohn C W, Holcomb F H, Baldwin P, et al. Ramgen power systems-supersonic component tenchnology for military engine applications, ADA482178[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2006.
[9] Picard M, Rancourt D, Plante J S, et al. Rim-rotor rotary ramjet engine, Part 2: quasi-one-dimensional aerothermodynamic design[J]. Journal of Propulsion and Power, 2012, 28(6): 1304-1314.
[10] Rancourt D, Picard M, Denninger M, et al. Rim-rotor rotary ramjet engine, Part 1: structural design and experimental validation[J]. Journal of Propulsion and Power, 2012, 28(6): 1293-1303.
[11] Lewis G D, Smith C E. Investagation of centrifugal force and Reynolds number effects on combustion processes,ADA013912[R]. 1975.
[12] Yatsufusa T, Chang X, Taki S. Experiments on flame holding position of the fin-less projectile in ram accelerator, AIAA-2001-1765[R]. Reston: AIAA, 2001.
[13] Lapsa A P, Dahm W J. Hyperacceleration effects on turbulent combustion in premixed step-stabilized flames[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1731-1738.
[14] Dahm W J, Lapsa A P, Hamlington P E. Inside-out rotary ramjet turbogenerator[C]//Proceedings of the International Energy Conversion Engineering Conference, 2006: 1221-1235.
[15] Guo X H. Investigation of spary combustion characteristic in conditions of high centrifugal acceleration[D]. Beijing: Beihang University, 2010 (in Chinese). 郭新华. 高离心加速度条件下液雾燃烧基础研究[D]. 北京: 北京航空航天大学, 2010.
[16] Wang Z Q. Effect of the centrifugal force on flame stabilization in the curved combustor[D]. Beijing: Beihang University, 2007 (in Chinese). 汪志强. 弯曲燃烧室强离心力条件下的火焰稳定研究[D]. 北京: 北京航空航天大学, 2007.
[17] An S, Lin Y Z, Zhang C, et al. Characterization of flame stabilization for V-gutter in centrifugal force field[J]. Journal of Aerospace Power, 2009, 24(5): 1011-1015 (in Chinese). 安帅, 林宇震, 张弛, 等. 离心力场下V型火焰稳定器火焰稳定性的研究[J]. 航空动力学报, 2009, 24(5): 1011-1015.
[18] Li L, Lin Y Z, Guo X H, et al. Characteristics of lean blowout limit for backward step-stabilized flame with centrifugal force effect[J]. Journal of Aerospace Power, 2011, 26(4): 822-828 (in Chinese). 李林, 林宇震, 郭新华, 等. 离心条件下后台阶贫油熄火特性[J]. 航空动力学报, 2011, 26(4): 822-828.
[19] Guo X H, Lin Y Z, Huang Y, et al. Cirterion number determination for rotating combustion[C]//Chinese Society of Aeronatics and Astronautics 14th Combustion and Heat and Mass Transfer Symposium, 2007: 444-451. 郭新华, 林宇震, 黄勇, 等. 旋转燃烧准则数的确定[C]//中国航空学会第十四届燃烧与传热传质学术交流会, 2007: 444-451.
[20] Lefebvre A H, Ballal D R. Gas turbine combustion: alternative fuels and emissions[M]. Hoboken: CRC Press, 2010.
[21] Lin Y Z, Li L, Zhang C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57.
[22] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on atomization of liquid jets in transverse airflow[J]. AIAA Journal, 1997, 38(1): 64-72.
[23] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on the breakup processes of liquid jets in subsonic crossflows[C]//33rd Joint Propulsion Conference and Exhibit, 1997.
/
〈 | 〉 |