舵机特征模型及其故障检测方法
收稿日期: 2013-08-05
修回日期: 2014-09-05
网络出版日期: 2014-09-26
基金资助
国家自然科学基金(61104082)
Characteristic model-based approach for actuator fault diagnosis
Received date: 2013-08-05
Revised date: 2014-09-05
Online published: 2014-09-26
Supported by
National Natural Science Foundation of China (61104082)
朱纪洪 , 和阳 , 黄志毅 . 舵机特征模型及其故障检测方法[J]. 航空学报, 2015 , 36(2) : 640 -650 . DOI: 10.7527/S1000-6893.2014.0200
Actuator fault diagnosis is very important to improve flight safety. Nevertheless, some nonlinear problems in classical approaches such as load time variability uncertainty and rate saturation etc. will affect the diagnosis, resulting in false alarm. This paper presents a characteristic model-based fault detection method for actuator to solve the problems. Firstly, a characteristic model used in diagnosis is established according to the bandwidth and the rate saturation of the actuator. Then, the reference responses of the velocity and displacement are calculated with state estimators. Lastly, judging by whether the residuals between the practical velocity or displacement and the references exceed the given thresholds or not, failures in motors or drives can be easily detected. This approach can avoid the false alarm caused by load uncertainty or rate saturation effectively, and the characteristic model, only related to the actuator bandwidth and rate saturation, is provided with the significant advantages of simplicity and practicability.
[1] Isermann R. Model-based fault-detection and diagnosis-status and applications[J]. Annual Reviews in Control, 2005, 29(1): 71-85.
[2] Zhou D H, Hu Y Y. Fault diagnosis techniques for dynamic dystems[J]. Acta Automatica Sinica, 2009, 35(6): 748-757 (in Chinese). 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(06): 748-757.
[3] Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252.
[4] Muenchhof M, Beck M, Isermann R. Fault-tolerant actuators and drives-structures, fault detection principles and applications[J]. Annual Reviews in Control, 2009, 33(2): 136-148.
[5] Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636-653.
[6] Cox N. The Mars exploration rovers: hitting the road on Mars[C]//Proceedings of 16th Triennial World Congress. South Africa: IFAC, 2005: 144-150.
[7] Tarnowski E. Overview of potential evolutions of technologies applied in commercial transport airplanes[C]//Proceedings of 17th World Congress. South Africa:IFAC,2008: 7-21.
[8] Goupil P. AIRBUS state of the art and practices on FDI and FTC in flight control system[J]. Control Engineering Practice, 2011, 19(6): 524-539.
[9] Lavigne L, Zolghadri A, Goupil P, et al. Robust and early detection of oscillatory failure case for new generation Airbus aircraft, AIAA-2008-7139[R]. Reston: AIAA, 2008.
[10] Lavigne L, Zolghadri A, Goupil P, et al. Oscillatory failure case detection for new generation Airbus aircraft: a model-based challenge[C]//Proceedings of 47th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE, 2008: 1249-1254.
[11] Goupil P. Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy[J]. Control Engineering Practice, 2010, 18(9): 1110-1119.
[12] Lavigne L, Zolghadri A, Goupil P, et al. A model-based technique for early and robust detection of oscillatory failure case in A380 actuators[J]. International Journal of Control, Automation and Systems, 2011, 9(1): 42-49.
[13] Bouibed K, Aitouche A, Bayart M. Sensor and actuator fault detection and isolation using two model based approaches: application to an autonomous electric vehicle[C]//Proceedings of 18th Mediterranean Conference on Control and Automation. Piscataway, NJ: IEEE, 2010: 1290-1295.
[14] Bobrinskoy A, Gatti M, Guerineau O, et al. Model-based fault detection and isolation design for flight-critical actuators in a harsh environment[C]//Proceedings of 2012 IEEE/AIAA 31st Digital Avionics Systems Conference. Piscataway, NJ: IEEE, 2012: 7D5-1-7D5-8.
[15] Van Eykeren L, Chu Q P, Mulder J A. Actuator fault detection by aerodynamic model identification[C]//Proceedings of 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. South Africa:IFAC, 2012: 1353-1357.
[16] Dong X M, Tan M, Qiu L H, et al. Robust fault detection for hydraulic servo system using disturbance compensation and adaptive threshold[J]. Control Theory & Applications, 2000, 17(2): 235-239 (in Chinese). 董选明, 谭民, 裘丽华, 等. 基于干扰补偿和自适应阈值的鲁棒故障检测[J]. 控制理论与应用, 2000, 17(2): 235-239.
[17] Fu Y L, Pang Y, Liu H S, et al. Fault detection of dual redundant actuation system based on the fault modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1372-1377 (in Chinese). 付永领, 庞尧, 刘和松, 等. 基于故障建模的双余度舵机故障诊断技术[J]. 北京航空航天大学学报, 2011, 37(11): 1372-1377.
[18] Wu H X, Xie Y C, Li Z B, et al. Intelligent control based on description of plant characteristic model[J]. Acta Automatica Sinica. 1999, 25(1): 9-17 (in Chinese). 吴宏鑫, 解永春, 李智斌, 等. 基于对象特征模型描述的智能控制[J]. 自动化学报, 1999, 25(1): 9-17.
[19] Wu H X, Liu Y W, Liu Z H, et al. Characteristic modeling and the control of flexible structure[J]. Science in China: Series E, 2001, 31(2): 137-149 (in Chinese). 吴宏鑫, 刘一武, 刘忠汉, 等. 特征建模与挠性结构的控制[J]. 中国科学E辑, 2001, 31(2): 137-149.
[20] Wu H X, Wang Y C, Xing Y. Intelligent control and application based on characteristic model[J]. Science in China: Series E, 2002, 32(6): 805-816 (in Chinese). 吴宏鑫, 王迎春, 邢琰. 基于智能特征模型的智能控制及应用[J]. 中国科学E辑, 2002, 32(6): 805-816.
[21] Wu H X, Hu J, Xie Y C. Characteristic model-based all-coefficient adaptive control method and its applications[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2007, 37(2): 213-221.
[22] Sun Z Q. Computer control theory and applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2008: 64-69 (in Chinese). 孙增圻. 计算机控制理论与应用[M]. 2版. 北京: 清华大学出版社, 2008: 64-69.
/
〈 | 〉 |