发动机

基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计

  • 李永洲 ,
  • 张堃元
展开
  • 南京航空航天大学 能源与动力学院, 南京 210016
李永洲 男, 博士研究生。主要研究方向: 高超声速推进技术和内流气体动力学。 Tel: 025-84892240 E-mail: nuaa-2004@126.com;张堃元 男, 硕士, 教授, 博士生导师。主要研究方向: 高超声速推进技术和内流气体动力学。 Tel: 025-84892201-2100 E-mail: zkype@nuaa.edu.cn

收稿日期: 2014-07-25

  修回日期: 2014-09-17

  网络出版日期: 2014-09-22

基金资助

国家自然科学基金 (90916029, 91116001, 11102087)

Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface

  • LI Yongzhou ,
  • ZHANG Kunyuan
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-07-25

  Revised date: 2014-09-17

  Online published: 2014-09-22

Supported by

National Natural Science Foundation of China (90916029, 91116001, 11102087)

摘要

提出了一种高超声速飞行器乘波前体的外锥形基准流场设计方法,在锥面马赫数分布规律给定的条件下,通过有旋特征线法实现反设计,提高了基准流场设计的灵活性。该基准流场通过锥形"下凹"弯曲激波和波后等熵压缩波系压缩气流,可以在较短的长度内完成高效压缩。基于反正切马赫数分布外锥形基准流场设计的乘波前体具有较高的容积率,乘波特性良好且出口均匀,设计点时有黏升阻比为1.89。另外,基于该乘波前体和马赫数分布可控的内收缩进气道给出了一种双乘波的前体与进气道一体化设计方案,实现了内外流分别独立乘波,充分发挥了乘波前体和内收缩进气道的各自优势。

本文引用格式

李永洲 , 张堃元 . 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015 , 36(1) : 289 -301 . DOI: 10.7527/S1000-6893.2014.0263

Abstract

Design method of external conical basic flow field for hypersonic waverider forebody with controllable Mach number distribution surface is proposed to improve their flexibility in this paper. The basic flow field is designed reversely from assigned conical surface Mach number distribution utilizing the rotational method of characteristics. The characteristic of this basic flow field is that the incoming flow can be efficiently compressed by concave cone shock and isentropic compression waves within short length. With the basic flow field of antitangent Mach number distribution, the waverider forebody is designed with high volume ratio, good waverider characteristics and exit uniformity. On-design lift-drag ratio is 1.89 under viscous condition. Then, based on this waverider forebody and inward turning inlet with controllable Mach number distribution, a dual waverider configuration integrated with forebody and inlet is proposed which achieves the internal and external flows waverider respectively, maximizing their own advantages.

参考文献

[1] Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles, AIAA-1993-0507[R]. Reston:AIAA, 1993.

[2] Goonko Y P, Mazhul I I. Some factors of hypersonic inlet/airplane interactions[J]. Journal of Aircraft, 2002, 39(1): 37-50.

[3] Berens T M, Bissinger N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36.

[4] Anderson J D, Lewis M J. Hypersonic waveriders-where do we stand?, AIAA-1993-0399[R]. Reston: AIAA, 1993.

[5] You Y C, Liang D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. SCIENTIA SINICA Technologica, 2009, 39(8): 1483-1494 (in Chinese). 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学:技术科学, 2009, 39(8): 1483-1494.

[6] Sobieczky H, Zores B, Wang Z. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1): 1-8.

[7] Rasmussen M L, Jischke M C, Daniel D C. Experimental forces and moments on cone-derived waveriders for Ma=3 to 5[J]. Journal of Spacecraft and Rockets, 1982, 19(6): 592-598.

[8] Nonweiler T R F. Delta wings of shapes amenable to exact shock-wave theory[J]. Journal of the Royal Aeronautical Society, 1963, 67(1): 39-40.

[9] Rasmussen M P. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(5): 537-545.

[10] Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration, AIAA-1994-0380[R]. Reston: AIAA, 1994.

[11] Goonko Y P, Mazhul I I, Markelov G N. Convergent flow derived waveriders[J]. Journal of Aircraft, 2000, 37(4): 647-654.

[12] He X Z, Ni H L. Osculating inward turning cone (OIC) wave rider-design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 803-808 (in Chinese). 贺旭照, 倪鸿礼. 密切内锥乘波体设计方法和性能分析[J]. 力学学报, 2011, 43(5): 803-808.

[13] He X Z, Ni H L. Osculating curved cone (OCC) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese). 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.

[14] Qian Y J. Computer program of supersonic axisymmetric rotational characteristic method[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(4): 454-459 (in Chinese). 钱翼稷. 超音速轴对称有旋流特征线法的计算程序[J]. 北京航空航天大学报, 1996, 22(4): 454-459.

[15] Wang Z, Qian Y J. Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 180-183 (in Chinese). 王卓, 钱翼稷. 乘波机外形设计[J]. 北京航空航天大学学报, 1999, 25(2): 180-183.

[16] Qiao W Y, Huang G P, Xia C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6): 1444-1452 (in Chinese). 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报, 2014, 29(6): 1444-1452.

[17] Lawing P L, Johnson C B. Inlet boundary-layer shapes on four aircraft forebodies at Mach 6[J]. Journal of Aircraft, 1978, 15(1): 62-63.

[18] Li Y Z, Zhang K Y, Nan X J. Design concept of controllable Mach number distribution hypersonic inward turning inlets[J]. Journal of Aerospace Power, 2012, 27(11): 2484-2491 (in Chinese). 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491.

[19] Li Y Z, Zhang K Y, Wang L, et al. Sensitivity analysis and optimization design of the basic flowfield with controllable Mach number distribution[J]. Journal of Aerospace Power, 2013, 28(4): 765-774 (in Chinese). 李永洲, 张堃元, 王磊, 等. 马赫数分布可控的基准流场灵敏度分析与优化设计[J]. 航空动力学报, 2013, 28(4): 765-774.

[20] Lewis M J. A hypersonic propulsion airframe integration overview, AIAA-2003-4405[R]. Reston: AIAA, 2003.

[21] You Y C. An overview of the advantages and concerns of hypersonic inward turning inlets, AIAA-2011-2269[R]. Reston: AIAA, 2011.

[22] You Y C, Liang D W, Guo R W. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). 尤延铖, 梁德旺, 郭荣伟. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525.

[23] He X Z, Qin S, Zhou Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese). 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276.

[24] You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody, AIAA-2009-7421[R]. Reston: AIAA, 2009.

[25] Nan X J, Zhang K Y. Numerical and experimental investigation on hypersonic inward turning inlets with basic flow field using arc tangent curve law of pressure rise, AIAA-2011-2270[R]. Reston: AIAA, 2011.

文章导航

/