面向叶片型面的五轴联动柔性数控砂带抛光技术
收稿日期: 2014-06-30
修回日期: 2014-07-18
网络出版日期: 2014-09-22
基金资助
国家科技重大专项 (2013ZX04011031)
Flexible polishing technology of five-axis NC abrasive belt for blade surface
Received date: 2014-06-30
Revised date: 2014-07-18
Online published: 2014-09-22
Supported by
National Science and Technology Major Projects (2013ZX04011031)
针对叶片型面抛光,在分析五轴联动数控砂带抛光可行性的基础上,设计并开发了五轴联动柔性数控砂带抛光机。提出了接触轮与叶片型面有效贴合的概念,并通过改善抛光工具、采用柔性抛光技术和控制抛光轴矢量来实现砂带与叶片型面的有效贴合。抛光轴矢量由抛光位点处法矢和接触轮进给矢量计算获得,既实现了砂带与叶片型面的有效贴合,而且满足抛光轮接触压力方向与柔性机构收缩方向基本一致的要求。抛光轨迹规划采用等参数线法,抛光行距根据抛光带宽确定。最后进行抛光实验,结果为精抛后粗糙度达到0.25~0.39 μm,抛光前后叶型轮廓度变化0.007 mm,抛光去除量在0.010~0.016 mm之间,满足图纸要求。通过实验表明,五轴联动数控砂带抛光叶片型面可行,采用本文所述技术能够满足叶片型面抛光要求。
蔺小军 , 杨艳 , 吴广 , 高源 , 陈悦 , 刘敏 , 刘明星 . 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015 , 36(6) : 2074 -2082 . DOI: 10.7527/S1000-6893.2014.0203
For the abrasive belt polishing of blade surface, the flexible polishing machine of five-axis NC abrasive belt is designed and developed based on the feasibility of five-axis NC abrasive belt polishing. The concept of effective matching of contacting wheel and blade surface is put forward. A new method through improving the polishing tool,using the flexible polishing technology and controlling the polishing axis vector is used to ensure the effective matching of contacting wheel and blade surface. The polishing axis vector is calculated by normal vector of polishing location point and feed direction vector of contacting wheel, so as to achieve the effective matching of contacting wheel and blade surface, and meet the basic consistency between polishing wheel contacting pressure direction and flexible polishing structure retractable direction. The iso-parametric lines method is used to plan polishing path and polishing stepover length is determined by the polishing width. Finally, the polishing test result displays that the roughness of fine polishing can reach 0.25-0.39 μm, the profile about blade surface before and after polishing changes 0.007 mm, and the polishing material removal is between 0.010-0.016 mm, meeting the requirements of the drawings. Experiments show that five-axis NC abrasive belt polishing for blade surface is feasible and the technology described in this paper can meet the requirements of the blade surface polishing.
Key words: flexible; polishing machines; NC; blades; path formulation; attitude control
[1] Yang Z C, Zhang D H, Yao C F, et al. Effects of high-speed milling parameters on surface integrity of TC4 titanium alloy [J]. Journal of Northwestern Polytechnical University, 2009, 27 (4): 538-543 (in Chinese). 杨振朝, 张定华, 姚倡锋, 等.TC4钛合金高速铣削参数对表面完整性影响研究[J].西北工业大学学报, 2009, 27 (4): 538-543.
[2] Yao C F, Zhang D H, Huang X C, et al. Exploring surface roughness and surface morphology of high-speed milling TC11 titanium alloy [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9): 1573-1578 (in Chinese). 姚倡锋, 张定华, 黄新春, 等. TC11钛合金高速铣削的表面粗糙度与表面形貌研究[J].机械科学与技术, 2011, 30(9): 1573-1578.
[3] Duan J H, Shi Y Y, Zhang J F, et al. Flexible polishing technology for blade of aviation engine [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 573-578 (in Chinese). 段继豪, 史耀耀, 张军锋, 等. 航空发动机叶片柔性抛光技术 [J]. 航空学报, 2012, 33(3): 573-578.
[4] Hung T C, Chang S H, Lin C C, et al. Effects of abrasive particle size and tool surface irregularities on wear rates of work and tool in polishing processes[J]. Microelectronic Engineering, 2011, 88(4): 2981-2990.
[5] Tam H, Lui C, Mok A. Robotic polishing of free-form surfaces using scanning paths[J]. Journal of Materials Processing Technology, 1999, 95(7): 191-200.
[6] Mirian S S, Fadaei A, Safavi S M, et al. Improving the quality of surface in the polishing process with the magnetic abrasive powder polishing using a high-frequency induction heating source on CNC table[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(5): 601-610.
[7] Lee H, Kim J, Kang H. Airbag tool polishing for aspherical glass lens molds[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 153-158.
[8] Lee E S, Lee S G, Choi W K, et al. Study on the effect of various machining speeds on the wafer polishing process[J]. Journal of Mechanical Science and Technology, 2013,27 (3): 3155-3160.
[9] Tam H, Cheng H. An investigation of the effects of the tool path on the removal of material in polishing[J]. Journal of Materials Processing Technology, 2010, 210(4): 807-818.
[10] Axint D A, Kritmanorot M, Axinte M, et al. Investigations on belt polishing of heat-resistant titanium alloys[J]. Journal of Materials Processing Technology, 2005, 166 (3): 398-404.
[11] Rech J, Kermouche G, Claudin C, et al. Modelling of the residual stresses induced by belt finishing on a AISI52100 hardened steel[J]. International Journal of Material Forming, 2008, 1(1): 567-570
[12] Axinte D A, Kwong J, Kong M C. Workpiece surface integrity of Ti-6-4 heat-resistant alloy when employing different polishing methods journal of materials proce-ssing technology[J]. Journal of Materials Processing Technology, 2009, 209(4): 1843-1852
[13] Wu B H, Luo M, Zhang Y, et al. Advances in tool path planning techniques for 5-axis machining of sculptured surfaces[J]. Journal of Mechanical Engineering, 2009, 44(10): 9-18 (in Chinese). 吴宝海, 罗明, 张莹, 等.自由曲面五轴加工刀具轨迹规划技术的研究进展 [J]. 机械工程学报, 2009, 44 (10): 9-18.
[14] Huang Z, Huang Y, Zhang W W, et al. The development of cutter location algorithm for the 6-axis simultaneous CNC abrasive belt grinding complex surface[J]. Key Engineering Materials, 2009, 416(9): 375-380.
[15] Huang Z, Huang Y, Wu Y Y, et al. Finishing advanced surface of magnesium alloy tube based on abrasive belt grinding technology[J]. Materials Science Forum, 2009, 610-613: 975-978.
[16] Huang Z, Huang Y, Zhang M D, et al. Development of the 6-axles CNC abrasive belt grinding machine[J]. Key Engineering Materials, 2008, 359(11): 574-578.
[17] Huang Z, Huang Y, Zhang M D, et al. Testing of a six-axis computer numberical control abrasive belt grinding machine based on free-form surface[J]. Journal of Chongqing University: Natural Science Edition, 2008, 31(6): 598-602 (in Chinese). 黄智, 黄云, 张明德, 等. 自由曲面六轴联动砂带磨削机床试验[J]. 重庆大学学报:自然科学版, 2008, 31(6): 598-602.
[18] Wu J Q, Huang Y, Huang Z. The analysis of four-axis belt grinding for marine propeller blade[J]. Advanced Materials Research, 2010, 154(10): 647-653.
[19] Zhang W W, Guo G, Zhang Y, et al. Tool path planning and geometry simulation for multi-axis CNC belt grinding[J]. Journal of Chongqing University: Natural Science Edition, 2010, 33(9): 8-13 (in Chinese). 张伟文, 郭钢, 张岳, 等.多轴联动砂带磨削刀触点路径规划及几何仿真[J]. 重庆大学学报: 自然科学版, 2010, 33(9): 8-13.
[20] Zhang Y, Huang Y, Huang Z. Spherical head surface roughness analysis and experimental research based on the abrasive belt grinding[J]. Key Engineering Meterials, 2011, 487(7): 396-401.
[21] Yang J Z, Zhang D, Li J W, et al. Generating path of spiral grinding tool for large nuclear-electric blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(10): 1149-1153 (in Chinese). 杨建中, 张栋, 李江威, 等. 大型核电叶片的螺旋磨削刀具轨迹生成[J]. 机械科学与技术, 2012, 31(10): 1149-1153.
[22] Shi H, Zhang Q J. Determination of contact wheel position and orientation for six-axis blade CNC abrasive belt grinding system[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(2): 196-200 (in Chinese). 石颢, 张秋菊. 六轴联动叶片砂带抛磨中接触轮姿态的确定[J]. 机械科学与技术, 2010, 29(2): 196-200.
[23] Wu G L, Zhang Q J. An algorithm for calculating the cutter location of a six-axis CNC belt grinding machine [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(6): 973-977 (in Chinese). 吴广领, 张秋菊. 六轴联动数控砂带磨削的刀位点计算与规划[J]. 机械科学与技术, 2011, 30(6): 973-977.
[24] Zhao Y, Zhao J, Zhang L, et al. Path planning for automatic robotic blade grinding[C]//International Conference on Mechatronics and Automation (ICMA 2009). Piscata-way, NJ: IEEE Press, 2009: 1556-1560.
[25] Zhao Y, Zhao J, Zhang L, et al. Development of a robotic 3D scanning system for reverse engineering of freeform part[C]//2008 International Conference on Advanced Computer Theory and Engineering. Piscataway, NJ: IEEE Press, 2008: 246-250.
[26] Li D, Zhang L, Yang X, et al. Research on the double-sided grinding and polishing machine tool system[C]//2010 IEEE International Conference on Information and Automation (ICIA). Piscataway, NJ, IEEE Press, 2010: 1968-1971.
[27] Li D, Zhang L, Zhao J, et al. Research on polishing path planning and simulation of small mobile robot[C]//2009 International Conference on Mechatronics and Automation. Piscataway, NJ: IEEE Press, 2009: 4941-4945.
[28] Li X B, Shi Y Y, Zhao P B, et al. Research on polishing force control technology of aero-engine blade in belt polishing [J]. Computer Integrated Manufacturing System, 2012, 18(6): 1209-1214 (in Chinese). 李小彪, 史耀耀, 赵鹏兵, 等.航空发动机叶片砂带抛光力控制技术研究[J]. 计算机集成制造系统, 2012, 18(6): 1209-1214.
[29] Zhao P B, Shi Y Y, Li X B. Compensation control of belt polishing force for aero-engine blade based on disturbance observer [J]. Computer Integrated Manufacturing System, 2013, 19(6): 1279-1287 (in Chinese). 赵鹏兵, 史耀耀, 李小彪.航空发动机叶片砂带抛光力的干扰观测补偿控制[J]. 计算机集成制造系统, 2013, 19(6): 1279-1287.
[30] Huang Y, Huang Z. The modern abrasive belt grinding technology and engineering application[M]. Chongqing: Chongqing University Press, 2009: 89-266 (in Chinese). 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆: 重庆大学出版社,2009: 89-266.
/
〈 | 〉 |