非线性壁板颤振分析
收稿日期: 2014-07-10
修回日期: 2014-09-02
网络出版日期: 2014-09-17
基金资助
国家自然科学基金 (11202165); 航天科技创新基金; 航天支撑技术基金
Analysis of nonlinear panel flutter
Received date: 2014-07-10
Revised date: 2014-09-02
Online published: 2014-09-17
Supported by
National Natural Science Foundation of China (11202165); Astronautic Technology Innovation Foundation; Astronautic Support Technology Foundation
安效民 , 胥伟 , 徐敏 . 非线性壁板颤振分析[J]. 航空学报, 2015 , 36(4) : 1119 -1127 . DOI: 10.7527/S1000-6893.2014.0221
Nonlinear panel flutter caused by the interaction between nonlinear fluid and geometrically nonlinear structure is studied by an improved computational fluid dynamics and computatienal structural dynamics (CFD/CSD) coupled program. A flux splitting scheme combined with implicit time marching technology and geometric conservation law is utilized to solve unsteady aerodynamic pressure; the finite element corotational theory is applied to modeling the geometric nonlinear two-dimensional and three-dimensional panels, and an approximate energy conservation algorithm is developed to obtain nonlinear structure response. The two solvers are connected by a second-order loosely coupled method and applied to the solution of panel flutter problems for supersonic, transonic and subsonic Mach numbers. A representative limited cycle oscillation appears when geometric nonlinearity and aerodynamic nonlinearity are considered. The flutter boundary and amplitude of limit cycle oscillation are discussed.
[1] Joseph D B, Hong L, Eric L M, et al. Recent developments of a coupled CFD/CSD methodology, AIAA-2001-31097[R]. Reston: AIAA, 2001.
[2] Gordnier R E, Fithen R. Coupling of a nonlinear finite element structural method with a Navier-Stokes solver[J]. Computers and Structures, 2003, 81(2): 75-89.
[3] Dowell E H. Panel flutter: a review of the aeroelastic stability of plates and shells[J]. AIAA Journal, 1970, 8(3): 385-399.
[4] Dowell E H, Thomas J P , Hall K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models, AIAA-2001-1212[R]. Reston: AIAA, 2001.
[5] Gordnier R E, Visbal M R. Computation of the aeroelastic response of a flexible delta wing at high angles of attack[J]. Journal of Fluids and Structures, 2004, 19(6):785-800.
[6] Mei C. A finite-element approach for nonlinear panel flutter[J]. AIAA Journal, 1977, 15(8): 1107-1110.
[7] Attar P J, Gordnier R E. Aeroelastic prediction of the limit cycle oscillations of a cropped delta wing[R]. AIAA-2005-1915[R]. Reston: AIAA, 2005.
[8] Xia W, Ni Q, Yang Z C. Compare of time domain method with frequency domain method in nonlinear flutter analysis for panels of supersonic airplane[J]. Chinese Journal of Solid Mechanics, 2010, 31(4): 417-421(in Chinese). 夏巍, 倪樵, 杨智春. 超声速飞行器壁板非线性颤振响应分析的时域法与频域法对比研究[J]. 固体力学学报,2010, 31(4): 417-421.
[9] Yang Z C, Zhou J, Gu Y S. Nonlinear thermal flutter of heated curved panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 30-38(in Chinese). 杨智春, 周建, 谷迎松. 超音速气流中受热曲壁板的非线性颤振特性[J]. 力学学报, 2012, 44(1): 30-38.
[10] Li L L, Zhao Y H. The flutter analysis of thermal panel under supersonic flow[J]. Journal of Dynamics and Control, 2012, 10(1): 67-70(in Chinese). 李丽丽, 赵永辉. 超音速下热壁板的颤振分析[J] . 动力学与控制学报, 2012, 10(1): 67-70.
[11] Yang C, Li G S, Wan Z Q. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter[J]. Science China Technological Sciences, 2012, 42(4): 369-377(in Chinese). 杨超, 李国曙, 万志强. 气动热-气动弹性双向耦合的高超声速曲面壁板颤振分析方法[J]. 中国科学: 技术科学, 2012, 42(4): 369-377.
[12] Crisfield M A. A unified co-rotational framework for solids, shells and beams[J]. Journal of Solids Structures, 1996, 33(20-22): 2969-2992.
[13] Battini J M. Co-rotational beam elements in instability problems[R]. Stockholm, Sweden: Technical Reports from Royal Institute of Technology Department of Mechanics, 2002.
[14] Pacoste C. Co-rotational flat facet triangular elements for shell instability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 156(1-4): 75-110.
[15] Galvaneito U, Crisfield M A. An energy-conserving co-rotational procedure for the dynamics of planar beam structures[J]. International Journal for Numerical Methods in Engineering , 1996, 39(13): 2265-2282.
[16] Relvas A, Suleman A. Application of the corotational structural kinematics and Euler flow to two-dimensional nonlinear aeroelasticity[J]. Computers and Structures, 2007, 85(17-18): 1372-1381.
[17] An X M, Xu M, Chen S L. An approximate energy conservation algorithm for shell structure based on co-rotational (CR) theory[J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 205-211(in Chinese). 安效民, 徐敏, 陈士橹. 基于CR理论的近似能量守恒算法在壳元中的应用[J]. 西北工业大学学报, 2011, 29(2):205-211.
[18] Yao W G, Xu M. Modified AUSMpw+ scheme and its application[C]// The 7th International Conference on System Simulation and Scientific Computing. Beijing: ICSC, 2008: 740-743.
[19] Farhat C. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18):1973-2001.
[20] Zhang W W, Gao C Q, Ye Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (2): 303-319 (in Chinese). 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[21] Xie L, Xu M, An X M, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulaiton[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511(in Chinese). 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511.
/
〈 | 〉 |