基于数字虚拟飞行的民用飞机纵向地面操稳特性评估
收稿日期: 2014-06-15
修回日期: 2014-08-14
网络出版日期: 2014-09-17
基金资助
国家"863计划"(2014AA110500)
Assessment of longitudinal ground stability and control for civil aircraft based on digital virtual flight testing method
Received date: 2014-06-15
Revised date: 2014-08-14
Online published: 2014-09-17
Supported by
National High-tech Research and Development Program of China (2014AA110500)
针对民用飞机设计方案纵向地面操稳特性的评估需求,面向适航标准的要求,提出了一种基于数字虚拟飞行的评估方法。基于适航条例要求提出了纵向地面操稳特性的量化判定准则,建立了飞机的地面运动模型和驾驶员操纵模型,以实现起降等特定地面运行任务的数字虚拟飞行,最终依据数字虚拟飞行结果和判定准则对飞机设计方案的地面操稳特性做出评估。应用此方法研究了某大型运输类飞机的纵向地面操稳特性。数字虚拟飞行结果表明:前翻倾向的严重情况发生在起降过程的高速滑行段,主轮刹车引起的机身前翻倾向是显著的,起落架纵向定位参数设计以及飞行进近参数选择均会对飞机的纵向地面操稳特性产生影响。
刘海良 , 王立新 . 基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J]. 航空学报, 2015 , 36(5) : 1432 -1441 . DOI: 10.7527/S1000-6893.2014.0190
In order to assess ground handling characteristics of civil aircraft during the preliminary design stage, an evaluation method considering the special requirements of airworthiness standard is proposed based on digital virtual flight testing. According to the context of specific airworthiness clause, limitations of aircraft ground motion parameters of importance are set up as quantitative aircraft ground handling criterion. A nonlinear aircraft ground motion model and pilot control models are established and synthesized to predict the dynamic response of aircraft while performing pilot-in-loop ground operations such as takeoff and landings. Comparing simulation results with criterion mentioned before, an assessment of airworthiness compliance is made. Finally, applying the new evaluation method, analysis of ground handling characteristics is conducted on a new type of transport aircraft during symmetric landing, and influences of wheel longitudinal location and final approach parameters' selection on longitudinal stability and control are also delivered.
[1] Kruger W, Kortuem W, Besselink I, et al. Aircraft landing gear dynamics: simulation and control[J]. Vehicle System Dynamics, 1997, 28(2-3): 119-158.
[2] Civil Aviation Administration of China. China civil aviation regulations part 25: airworthiness standards of transport category aircraft, CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). 中国民用航空局. CCAR-25-R4 中国民用航空规章第25部 运输类飞机适航标准[S]. 北京: 中国民用航空局, 2011.
[3] Scharl J, Mavris D N, Burdun I Y. Use of flight simulation in early design: formulation and application of the virtual testing and evaluation methodology, AIAA-2000-5590[R]. Reston: AIAA, 2000.
[4] Burdun I Y, DeLaurentis D A, Mavris D N. Modeling and simulation of airworthiness requirements for an HSCT prototype in early design, AIAA-1998-4936[R]. Reston: AIAA, 1998.
[5] Baltes E, Spitz W. Virtual flight test as advanced step in aircraft development, AIAA-2002-5823[R]. Reston: AIAA, 2002.
[6] Barnes A G, Yager T J. Enhancement of aircraft ground handling simulation capability, AGARD-AG-333[R]. Paris: Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, 1998.
[7] George R, Doyle J. A review of computer simulations for aircraft-surface dynamics[J]. Journal of Aircraft, 1986: 23(4): 257-265.
[8] Coetzee E B. Modelling and nonlinear analysis of aircraft ground manoeuvres[D]. Bristol: University of Bristol, 2006.
[9] Li B, Jiao Z X. Aircraft landing gear system dynamic modeling and simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(1): 46-49 (in Chinese). 李波, 焦宗夏. 飞机起落架系统动力学建模与仿真[J]. 北京航空航天大学学报, 2007, 33(1): 46-49.
[10] Zhang M, Nie H. Dynamics analysis of aircraft ground steering and braking response[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 616-621 (in Chinese). 张明, 聂宏. 飞机地面转弯和刹车响应动力学分析[J]. 航空学报, 2008, 29(3): 616-621.
[11] U.S. Department of Transportation, Faderal Aviation Administration. Flight test guide for certification of transport category airplanes, AC No. 25-7C[S]. Oklahoma: FAA, 2012.
[12] U.S. Department of Transportation, Faderal Aviation Administration. Airplane flying handbook FAA-H-8083-3A[M].Oklahoma: FAA, 2004: 8-33.
[13] Khapane P D. Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J]. Aerospace Science and Technology, 2003, 7(8): 611-619.
[14] Pi W S, Yamane J R, Smith M J C. Generic aircraft ground operation simulation, AIAA-1986-0989[R]. Reston: AIAA, 1986.
[15] Smiley R F, Horne W B. Mechanical properties of pneumatic tires with special reference to modern aircraft tires, NASA TR-64[R]. Washington, D.C.: NASA, 1960.
[16] Wooda G, Blundell M, Sharma S. A low parameter tyre model for aircraft ground dynamic simulation[J]. Materials and Design, 2012, 35: 820-832.
[17] Johnson E N, Pritchett A R. Generic pilot and flight control model for use in simulation studies, AIAA-2002-4694[R]. Reston: AIAA, 2002.
[18] Currey N S. Aircraft landing gear design: principles and practices[M]. Reston.: AIAA, 1988: 25-31.
/
〈 | 〉 |