基于滑模干扰观测器的高超声速飞行器滑模控制
收稿日期: 2014-07-07
修回日期: 2014-07-29
网络出版日期: 2014-09-11
基金资助
国家自然科学基金 (91216304)
Sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer
Received date: 2014-07-07
Revised date: 2014-07-29
Online published: 2014-09-11
Supported by
National Natural Science Foundation of China (91216304)
首先,针对存在外部干扰和输入饱和的通用式高超声速飞行器的纵向动态模型,提出一种基于滑模干扰观测器的抗饱和滑模控制器。该滑模控制器采用非线性趋近律,在保证系统快速、稳定跟踪指令的同时,能够消除传统滑模控制中的抖振现象,并针对执行器饱和问题,加入抗饱和补偿器,以提高系统的稳定性。其次,对于系统中存在的干扰和不确定性,提出一种滑模干扰观测器,用以准确估计系统中存在的等效干扰,并将该观测器对干扰的估计值应用于滑模控制器中进行补偿,以消除干扰。再次,利用Lyapunov理论对所提出的基于滑模干扰观测器的抗饱和滑模控制器进行稳定性分析。最后,对高超声速飞行器的巡航状态进行仿真。仿真结果表明,所提方法能够有效提高系统的稳定性和抗干扰性,具有一定的实际应用价值。
王建敏 , 吴云洁 , 董小萌 . 基于滑模干扰观测器的高超声速飞行器滑模控制[J]. 航空学报, 2015 , 36(6) : 2027 -2036 . DOI: 10.7527/S1000-6893.2014.0218
Firstly, aimed at the longitudinal dynamics model of generic hypersonic flight vehicle in the presence of external disturbances and input saturation, an anti-windup sliding mode controller based on sliding mode disturbance observer is proposed. The sliding mode controller employs nonlinear reaching law, which makes the system track reference command fast and steadily; at the same time it eliminates the chattering phenomenon existing in the traditional sliding mode control, adds saturation compensator according to the problem of actuator saturation to improve the stability for the system. Secondly, a sliding mode disturbance observer is proposed to overcome the disturbances and uncertainties of the system, which can exactly estimate the equivalent disturbances added in the system. The estimated value evaluated by the observer is applied to the sliding mode controller as compensation to achieve the goal of eliminating disturbance. Thirdly, the stability of the proposed anti-windup sliding mode controller based on sliding mode disturbance observer is analyzed by means of Lyapunov theory. Finally, the simulation is conducted for cruise flight condition of hypersonic flight vehicle. Simulation results show that the suggested method can improve the stability and disturbance rejection performance for the system effectively, which has certain actual application value.
[1] Li H N, Lei H M, Zhai D L, et al. Tracking oriented dynamics modeling of airbreathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1651-1664 (in Chinese). 李海宁, 雷虎民, 翟岱亮, 等. 面向跟踪的吸气式高超声速飞行器动力学建模[J]. 航空学报, 2014, 35(6): 1651-1664.
[2] Xu H J, Maj D M, Petros A I. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838.
[3] Obaid U R, Baris F, Ian R P. Uncertainty modeling and robust minimax LQR control of multivariable nonlinear systems with application to hypersonic flight[J]. Asian Journal of Control, 2012, 14(5): 1180-1193.
[4] Obaid U R, Ian R P, Baris F. Robust nonlinear control design of a hypersonic flight vehicle using minimax linear quadratic Gaussian control[C]//Proceedings of 2010 49th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2010: 6219-6224.
[5] Obaid U R, Ian R P, Baris F. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles[J]. Proceedings of Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2012, 227(1): 3-11.
[6] Gao W B, Cheng M. Quality control of variable structure control systems[J]. Control and Decision, 1989, 4:1-6 (in Chinese). 高为炳, 程勉. 变结构控制系统的品质控制[J]. 控制与决策, 1989, 4: 1-6.
[7] Gao W B, Hung J C. Variable structure control of nonlinear systems: a new approach[J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 45-55.
[8] Charles J F,Hadi Y K, Kamal A H. Sliding-mode robot control with exponential reaching law[J]. IEEE Tansactions on Industrial Electronics, 2011, 58(2): 600-610.
[9] Li J N, Su H Y, Zhang Y B, et al. Chattering free sliding mode control for uncertain discrete time-delay singular systems[J]. Asian Journal of Control, 2013, 15(1): 260-269.
[10] Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
[11] Li H, Dou L H, Su Z. Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator[J]. International Journal of Systems Science, 2013, 44(3): 401-415.
[12] Li J, Zuo B, Duan M Y, et al. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 220-233 (in Chinese). 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal 滑模控制[J]. 航空学报, 2012, 33(2): 220-233.
[13] Huang X L, Ge D M. Robust gain-scheduling control of hypersonic vehicle subject to input constraints[J]. Systems Engineering and Electronics, 2011, 33(8): 1829-1836 (in Chinese). 黄显林, 葛东明. 输入受限高超声速飞行器鲁棒变增益控制[J]. 系统工程与电子技术, 2011, 33(8): 1829-1836.
[14] Shao X L, Wang H L. Attitude control for hypersonic vehicle based on SMDO-TLC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1568-1575 (in Chinese). 邵星灵, 王宏伦. 基于SMDO-TLC的高超声速飞行器姿态控制[J]. 北京航空航天大学学报, 2014, 40(11): 1568-1575.
[15] Huang X Y, Wang Q, Dong C Y. Robust adaptive control for hypersonic vehicle based on dynamic inversion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 560-563 (in Chinese). 黄喜元, 王青, 董朝阳. 基于动态逆的高超声速飞行器鲁棒自适应控制[J]. 北京航空航天大学学报, 2011, 37(5): 560-563.
[16] Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles[J]. Nonlinear Dynamics, 2013, 73(1-2): 229-244.
[17] Wang J M, Wu Y J, Liu X D. Sliding mode controller design based on reaching law for hypersonic flight vehicle[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 5(4): 1450014-1-17.
[18] Wang Q, Robert F S. Robust nonlinear control of a hypersonic aircraft[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577-585.
[19] Yan L, He H L, Jiang M. Anti-windup control and applications based on adaptive sliding-mode[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(7): 72-75 (in Chinese). 严路, 何汉林, 江梅. 基于自适应滑模抗饱和控制及其应用[J]. 华中科技大学学报:自然科学版, 2014, 42(7): 72-75.
[20] Charles E H, Yuri B S. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1315-1328.
/
〈 | 〉 |