临近空间高超声速滑跃式机动目标的跟踪模型
收稿日期: 2014-05-06
修回日期: 2014-07-14
网络出版日期: 2014-09-10
基金资助
国家自然科学基金 (61372027, 61102165); "泰山学者"建设工程专项经费资助课题
A tracking model for near space hypersonic slippage leap maneuvering target
Received date: 2014-05-06
Revised date: 2014-07-14
Online published: 2014-09-10
Supported by
National Natural Science Foundation of China (61372027,61102165); Special Foundation Issue for "Tai-Shan Scholar" Construction Project
王国宏 , 李俊杰 , 张翔宇 , 吴巍 . 临近空间高超声速滑跃式机动目标的跟踪模型[J]. 航空学报, 2015 , 36(7) : 2400 -2410 . DOI: 10.7527/S1000-6893.2014.0160
The slippage leap maneuvering is one of the major maneuvering styles that the near space hypersonic vehicles may adopt, but there is little literature on the tracking techniques for the hypersonic slippage leap maneuvering target. Therefore, a special tracking model for the hypersonic slippage leap maneuvering target is put forward. The key of the model is to model target's acceleration as a zero mean stochastic process with sine wave autocorrelation, then a new state equation to track the near space hypersonic slippage leap maneuvering targets is built. Compared with Singer model, Jerk model and CV+CA+Singer interacting multiple model (IMM) by means of simulation experiments, the rationality and superiority of the proposed model for tracking the near space hypersonic slippage leap maneuvering target have been proved.
[1] Di X G, Yang Y F. Ascending trajectory optimization of near-space airship based on genetic algorithm[C]//Proceedings of 2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataaway, NJ: IEEE Press, 2013: 918-922.
[2] Dou L Q, Zong Q, Ji Y H. Robust dynamic inversion control for near space vehicle[C]//Proceedings of 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics(ISSCAA). Piscataaway, NJ: IEEE Press, 2010: 744-749.
[3] Shen Q K, Jiang B, Cocquempot V. Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle attitude dynamics[J]. IEEE Transactions on Fuzzy Systems, 2012, 21(2): 289-300.
[4] Brink C. X-51A flight test status update[C]//Proceedings of 2012 43rd IEEE Annual International Symposium of the Society of Flight Test Engineers. Piscataaway, NJ: IEEE Press, 2012: 406-423.
[5] Markin E. Scatter pattern calculations and determination performance limitations of existing air defense systems for intercepting hypersonic vehicles[C]//Proceedings of 2012 IEEE Radar Conference. Piscataaway, NJ: IEEE Press, 2012: 0481-0486.
[6] Zhao J, Meng L S. Jumping trajectory optimization of the near space vehicles with hypersonic speed[J]. Tactical Missile Technology, 2010, 9(5): 32-35 (in Chinese). 赵钧, 孟令赛. 高超声速临近空间飞行器跳跃飞行轨迹优化[J]. 战术导弹技术, 2010, 9(5): 32-35.
[7] Zhu W L, Xu Z P, Li B, et al. Research on the observability of bearings-only target tracking based on multiple sonar sensors[C]//Proceedings of 2012 2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control(IMCCC). Piscataaway, NJ: IEEE Press, 2012: 631-634.
[8] Zhu W L, Xu Z P, Li B, et al. Research on the observability of bearings-only tracking for moving target in constant acceleration based on multiple sonar sensors [C]//Proceedings of 2012 International Symposium on Information Science and Engineering. Piscataaway, NJ: IEEE Press, 2013: 3-6.
[9] He Y, Xiu J J, Guan X, et al. Radar data processing with applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 36-40 (in Chinese). 何友, 修建娟, 关欣, 等. 雷达数据处理及应用[M]. 北京: 电子工业出版社, 2013: 36-40.
[10] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part I: dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1345-1353.
[11] Singer R A. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(4): 473-483.
[12] Mehrotra K, Mahapatra P R. A Jerk model for tracking highly maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1094-1105.
[13] Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 186-194.
[14] Mao Y H, Li X R, Duan Z S, et al. Unbiased measurement model conversion for tracking with multiple radars or sonars[C]//Proceedings of 2012 31st Chinese Control Conference. Piscataaway, NJ: IEEE Press, 2012: 897-903.
[15] Liu Z X, Xie W X, Wang P. Tracking a target using a cubature Kalman filter versus unbiased converted measurements[C]//Proceedings of 2012 IEEE 11th International Conference on Signal Processing(ICSP). Piscataaway, NJ: IEEE Press, 2012: 2130-2133.
[16] Bollino K P. High-fidelity real-time trajectory optimization for reusable launch vehicles[D]. Monterey: Naval Postgraduate School, 2006.
[17] Chuang C H, Hitoshi M. Periodic optimal cruise for a hypersonic vehicle with constraints[J]. Journal of Spacecraft and Rockets, 1997, 34(2): 165-171.
[18] Cheng L, Jiang C S, Chen M, et al. Online-SVR-based GPC control for airframe/engine integrated near-space hypersonic vehicle[C]//Proceedings of 2011 8th Asian Control Conference (ASCC), 2011: 682-687.
[19] Zong Q, Tian B L, Dou L Q. Ascent phase trajectory optimization for near space vehicle based on Gauss pseudospectral method[J]. Journal of Astronautics, 2010, 31(7): 1775-1781 (in Chinese). 宗群, 田栢苓, 窦立谦. 基于Gauss伪谱法的临近空间飞行器上升段轨迹优化[J]. 宇航学报, 2010, 31(7): 1775-1781.
[20] Qian Y J. Aerodynamics[M]. Beijing: Beihang University Press, 2005: 17-21 (in Chinese). 钱翼稷. 空气动力学[M]. 北京: 北京航天航空大学出版社, 2005: 17-21.
/
〈 | 〉 |