固体力学与飞行器总体设计

共轴式直升机地面共振机理分析

  • 胡国才 ,
  • 刘湘一 ,
  • 刘书岩 ,
  • 王允良
展开
  • 海军航空工程学院 飞行器工程系, 烟台 264001
胡国才 男, 博士, 教授, 博士生导师。主要研究方向: 直升机动力学。 Tel: 0535-6635085 E-mail: guocaihu11@sina.com;刘湘一 男, 博士研究生。主要研究方向: 直升机动力学。 Tel: 0535-6635572 E-mail: liuxiang-1@sohu.com;刘书岩 男, 硕士, 讲师。主要研究方向: 直升机动力学。 Tel: 0535-6635572 E-mail: golden18@sina.com;王允良 男, 博士, 讲师。主要研究方向: 飞行器优化设计、计算流体力学。 Tel: 0535-6635572 E-mail: flyingsyl@163.com

收稿日期: 2014-06-09

  修回日期: 2014-07-14

  网络出版日期: 2014-09-05

基金资助

航空科学基金 (20145784010)

Physical mechanism investigation of coaxial helicopter ground resonance

  • HU Guocai ,
  • LIU Xiangyi ,
  • LIU Shuyan ,
  • WANG Yunliang
Expand
  • Department of Airborne Vehicle Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2014-06-09

  Revised date: 2014-07-14

  Online published: 2014-09-05

Supported by

Aeronautical Science Foundation of China (20145784010)

摘要

为理解共轴式直升机上下旋翼与机体之间的耦合作用,提出了一种分析共轴式直升机地面共振物理机理的时-频分析方法。考虑上下旋翼周期型摆振与机体俯仰和滚转自由度(DOF),建立了具有结构阻尼的共轴铰接式旋翼直升机地面共振分析模型。通过特征值计算和扰动运动方程的数值积分,获得了共轴式直升机地面共振的模态特性及时域响应特性,根据各自由度的响应特性揭示了旋翼与机体之间的相互作用。分析表明,具有上旋翼特征的摆振后退型模态是最不稳定模态。在动不稳定区内,上旋翼周期摆振与机体滚转自由度之间相互输入能量,是造成共轴式直升机地面共振的主要原因;对于该不稳定模态,下旋翼的周期摆振与机体滚转自由度之间也构成相互输入能量的相位关系,增加了直升机地面共振的动不稳定性。

本文引用格式

胡国才 , 刘湘一 , 刘书岩 , 王允良 . 共轴式直升机地面共振机理分析[J]. 航空学报, 2015 , 36(6) : 1848 -1857 . DOI: 10.7527/S1000-6893.2014.0183

Abstract

In order to understand the coupling interaction between upper/lower rotor and fuselage of coaxial helicopter, a time-frequency analytical method is presented to analyze physical mechanism of coaxial helicopter ground resonance. An analytical model for coaxial articulated rotor helicopter ground resonance with structural damping is established, considering periodic lag motion DOFs (upper rotor and lower rotor), body pitch rotation DOF and body roll rotation DOF. Eigenvalue calculation and numerical integration of disturbance equations of motions are used to obtain modal characteristics and time-domain response characteristics of coaxial helicopter ground resonance, and the interaction between rotors and body is revealed according to the response of various DOFs. The analytical results show that regressive lag mode with upper rotor characteristics is the most instability mode. In dynamic instability region, coaxial helicopter ground resonance is mainly due to energy transferred between periodic lag motion of upper rotor and body roll rotation. For this instability mode, energy transferred between periodic lag motion of lower rotor and body roll rotation also exists and it can enhance ground resonance instability of coaxial helicopter.

参考文献

[1] Coleman M L, Feingold A M. Theory of self-excited mechanical oscillation of helicopter rotor with hinged blades, NACA TR-1351[R]. Washington, D.C.: NACA, 1958.
[2] Zhang X G. Physical understanding of helicopter air and ground resonance[J]. Journal of the American Helicopter Society, 1986, 31(4): 4-11.
[3] Burkam J E, Miao W L. Exploration of aeroelastic stability boundries with a soft-in-plane hingeless rotor model[J]. Journal of the American Helicopter Society, 1972, 17(4): 27-35.
[4] Ormiston R A. Rotor-fuselage dynamics of helicopter air and ground resonance[J]. Journal of the American Helicopter Society, 1991, 36(2): 3-20.
[5] Zhang X G. The influence of main design parameters on helicopter air resonance and its source of instability[C]//ICAS-92-6.4R. Beijing: ICAS, 1992: 869-878.
[6] Tongue B H, Flowers G T. Non-linear rotorcraft analysis[J]. International Journal Non-linear Mechanics, 1988, 23(3): 189-203.
[7] Tang D M, Dowell E H. Influence of nonlinear blade damping on helicopter ground resonance stability[J]. Journal of Aircraft, 1986, 23(2): 104-110.
[8] Smith E C, Govindswamy K, Beale M R, et al. Aeroelastic response and stability of helicopters with elastomeric lag damper[J]. Journal of the American Helicopter Society, 1996, 43(3): 257-266.
[9] Sahasrabudhe V, Gold P J. Reducing rotor-body coupling using active control[C]//Proceedings of the American Helicopter 60th Annual Forum. Washington, D.C.: AHS, 2004: 1818-1834.
[10] Zhao Y S, Choi Y T, Wereley N M. Semi-active damping of ground resonance in helicopter using magnetorheological dampers[J]. Journal of the American Helicopter Society, 2004, 49(4): 468-482.
[11] Bousman W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1): 46-54.
[12] McNulty M I, Bousman W G. Integrated technology rotor methodology assessment workshop, CP-10007[R]. Washington, D.C.: NASA, 1988.
[13] Niebanck C, Girvan W. Sikorsky S-76 analysis, design, and development for successful dynamic characteristics[C]//The American Helicopter Society 34th Annual Forum Proceedings. Washington, D.C.: AHS, 1978: 23.1-23.17.
[14] Wang J M, Duh J, Fuh J. Stability of the Sikorsky S-76 bearingless main rotor[C]//Proceedings of the American Helicopter 49th Annual Forum. Washington, D.C.: AHS, 1993: 983-1009.
[15] Krysinski T, Ferullo D. Overview of the EC155 dynamics validation program from design stage up to certification[C]//Proceedings of the American Helicopter 55th Annual Forum. Washington, D.C.: AHS, 1999: 1056-1063.
[16] Narramore J M, Mithat Y. Bell 429 main rotor aerodynamic and dynamic development[C]//Proceedings of the American Helicopter 66th Annual Forum. Washington, D.C.: AHS, 2010: 436-452.
[17] Zhang X G, Liu Q. The application of complex coordinates and mutual excitation analysis to the investigation of helicopter ground resonance[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(11): 586-593 (in Chinese). 张晓谷, 刘强. 复数坐标及互激励分析在直升机"地面共振"分析中的应用[J]. 航空学报, 1992, 13(11): 586-593.
[18] Lu M, Fei B J, Ren Z Y, et al. A numerical analysis for the ground resonance of a two-blade helicopter rotor on anisotropic flexible supports[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(3): 348-354 (in Chinese). 陆萌, 费斌军, 任志勇, 等. 共轴(单轴)双桨叶直升机"地面共振"的数值分析[J]. 航空学报, 1995, 16(3): 348-354.

文章导航

/