材料工程与机械制造

面向自适应加工的精锻叶片前后缘模型重构

  • 蔺小军 ,
  • 陈悦 ,
  • 王志伟 ,
  • 郭研 ,
  • 高源 ,
  • 张新鸽
展开
  • 1. 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072;
    2. 西安航天发动机厂, 西安 710100
蔺小军 男,博士,高级工程师。主要研究方向:精密几何测量、CAD/CAM。 Tel: 029-88460426 E-mail: linxj@nwpu.edu.cn;陈悦 女,硕士研究生。主要研究方向:精密几何测量、CAD/CAM。 E-mail: 335227807@qq.com;王志伟 男,博士研究生。主要研究方向:集成制造技术、CAD/CAM。 E-mail: zwwang1987@126.com

收稿日期: 2014-06-11

  修回日期: 2014-07-28

  网络出版日期: 2014-08-25

基金资助

国家科技重大专项(2013ZX04011031)

Model restructuring about leading edge and tailing edge of precision forging blade for adaptive machining

  • LIN Xiaojun ,
  • CHEN Yue ,
  • WANG Zhiwei ,
  • GUO Yan ,
  • GAO Yuan ,
  • ZHANG Xin'ge
Expand
  • 1. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Xi'an Aerospace Engine Factory, Xi'an 710100, China

Received date: 2014-06-11

  Revised date: 2014-07-28

  Online published: 2014-08-25

Supported by

National Science and Technology Major Project(2013ZX04011031)

摘要

针对精锻叶片前后缘数控加工在加工边界出现"台阶"等问题,提出面向自适应加工的模型重构方法。首先,根据精锻叶片的特点给出前后缘加工工艺方案。其次,根据工艺方案建立在机测量模型并进行路径规划。在此基础上,依据前后缘实际几何型面参数以及理论模型各截面前后缘圆弧圆心和半径允差,提出重构模型圆弧圆心及半径搜索算法;根据各截面的测量点拟合线、理论截面线以及搜索的圆弧圆心和半径,建立重构前后缘模型。最后,通过对比重构模型与理论模型的偏差以及数控加工试验证明该方法能够有效地减小锻造叶片叶身实际型面与前后缘在衔接处的"台阶"缺陷问题,为复合制造工艺背景下精锻叶片前后缘加工成型提供依据。

本文引用格式

蔺小军 , 陈悦 , 王志伟 , 郭研 , 高源 , 张新鸽 . 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015 , 36(5) : 1695 -1703 . DOI: 10.7527/S1000-6893.2014.0171

Abstract

In order to solve the problems such as "steps" which are caused by precision forging NC machining of the leading edge and the tailing edge in machining boundary, the model reconstruction method of adaptive machining is proposed. Firstly, according to the characteristics of precision forging blades, the machining program of leading edge and tailing edge is put forward. Secondly, according to the machining program, on-machine measurement model and the path planning are proposed. On this basis, according to the actual geometrical parameters of the leading edge and the tailing edge, as well as the tolerance of the center of circle and arc radius in the leading edge and the tailing edge of the theoretical models, a search algorithm is put forward to ascertain a new arc radius and center of the circle of the reconstruction model. Besides, according to the fitting line of the measurement points in each cross section line, theoretical cross section line and the circular arc of the search center and radius,models of the leading edge and the tailing edge are reconstructed. Finally, by comparing the deviation between the reconstruction model and the theoretical model, and the NC machining test, the proposed method is proved to be efficient in weakening the adverse effect of the "steps" between the actual type surface of the forging blade and the leading edge and tailing edge. In addition, this method can also provide evidence for the machining forming in the leading edge and tailing edge of precision forging blade under the background of the composite manufacturing process.

参考文献

[1] Mavromihales M, Mason J, Weston W. A case of reverse engineering for the manufacture of wide chord fan blades (WCFB) used in Rolls Royce aero engines[J]. Journal of Materials Processing Technology, 2003, 34(3): 279-286.
[2] Lim T S, Lee C M, Kim S W, et al. Evaluation of materials of cutter orientations in 5-axis high speed milling of turbine blade[J]. Journal of Materials Processing Technology, 2002, 30(2): 401-406.
[3] Gao J, Chen X, Zheng D T, et al. Adaptive repair approach for recovering components from defects[J]. Chinese Journal of Mechanical Engineering, 2008, 21(1):57-60.
[4] Gao J, Chen X, Yilmza O, et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction[J]. International Journal of Advanced Manufacturing Technology, 2008, 36(11-12): 1170-1179.
[5] Xu B S, Dong S Y, Zhu S, et al. Prospects and developing of remanufacture forming technology[J]. Journal of Mechanical Engineering, 2013, 48(15): 96-105 (in Chinese). 徐滨士, 董世运, 朱胜, 等. 再制造成形技术发展及展望[J]. 机械工程学报, 2013, 48(15): 96-105.
[6] Hu S L, Zhang D H, Zhang Y, et al. Inspection method of blade shape based on digitized template with design tolerance constraints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2411-2418 (in Chinese). 胡述龙, 张定华, 张莹, 等. 带约束的数字样板叶型检测方法[J]. 航空学报, 2013, 34(10): 2411-2418.
[7] Cheng Y Y, Zhang D H, Bu K, et al. Model registration control point set selection for turbine blade shape inspection[J]. Journal of Mechanical Engineering, 2009, 45(11): 240-246 (in Chinese). 程云勇, 张定华, 卜坤, 等. 涡轮叶片形状检测中的模型控制点集选取[J]. 机械工程学报, 2009, 45(11): 240-246.
[8] Liu S L, Zhang L Y, Wang X F. A shape registration method considering the regional difference in precision[J]. Journal of Mechanical Engineering, 2013, 49(13): 139-144 (in Chinese). 刘胜兰, 张丽艳, 王晓飞. 一种考虑区域精度差异的模型配准方法[J]. 机械工程学报, 2013, 49(13): 139-144.
[9] Jing S K, Cheng Y Y, Zhang D H, et al. Tolerance zone constrained alignment method for turbine blade mode[J]. Computer Integrated Manufacturing Systems, 2010, 16(4): 883-886 (in Chinese). 敬石开, 程云勇, 张定华, 等. 一种区域公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2010, 16(4): 883-886.
[10] Zhang D H, Cheng Y Y, Bu K, et al. Reliable alignment method for blade shape analysis considering its blend and twist deformation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2449-2455 (in Chinese). 张定华, 程云勇, 卜坤, 等. 考虑弯扭变形的叶片模型配准方法[J]. 航空学报, 2009, 30(12): 2449-2455.
[11] Mohaghegh K, Sadeghi M H, Abdullah A. Reverse engineering of turbine blades based on design intent [J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(9-10): 1009-1020.
[12] Wu X M, Li G X, Shan D B, et al. A new surface reconstruction method in reverse engineering[C]//2009 Fifth International Conference on Natural Computation. Piscataway, NJ: IEEE Press, 2009: 334-338.
[13] Yue Y, Wang Z Q, Han Q Y. Reconstruction of steam turbine blade twisted based on NURBS surface[C]//2010 Third International Conference on Information and Computing (ICIC). Piscataway, NJ: IEEE Press, 2010: 50-53.
[14] Bai X L, Zhang S S. Hierarchical B-spline surface fitting of turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1978-1984 (in Chinese). 白晓亮, 张树生. 涡轮叶片叶面B-spline曲面层次化拟合方法[J]. 航空学报, 2009, 30(10): 1978-1984.
[15] Zhang R H, Yang J H, Liu Y. Numerical model of centrifugal pump blade based on iteration of surface[J]. Journal of Mechanical Engineering, 2006, 42(10): 70-72 (in Chinese). 张人会, 杨军虎, 刘宜. 基于曲面迭代的离心泵数值叶片模型[J]. 机械工程学报, 2006, 42(10): 70-72.
[16] Zhou Z G. Current situations and key techniques of automatic aerodynamic design of compressor/fan blades[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 257-266 (in Chinese). 周正贵. 压气机/风扇叶片自动优化设计的研究现状和关键技术[J]. 航空学报, 2008, 29(2): 257-266.
[17] Zhang D H, Zhang Y, Wu B H, et al. Application of adaptive machining technology in blisk manufacturing[J]. Aeronautical Manufacturing Technology, 2008(13): 51-55 (in Chinese). 张定华, 张莹, 吴宝海, 等. 自适应加工技术在整体叶盘制造中的应用[J]. 航空制造技术, 2008(13): 51-55.
[18] Obeidat S M, Raman S. An intelligent sampling method for inspecting free-form surfaces [J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(11-12): 1125-1136.
[19] Gao J, Chen Y P, Deng H Y, et al. In-situ inspection error compensation for machining accuracy improvement of complex components[J]. Journal of Mechanical Engineering, 2013, 49(19): 133-143 (in Chinese). 高健, 陈岳坪, 邓海洋, 等. 复杂曲面类零件加工精度的原位检测误差补偿方法[J]. 机械工程学报, 2013, 49(19): 133-143.

文章导航

/