基于一致关联数最大化的航迹关联算法
收稿日期: 2013-12-11
修回日期: 2014-08-08
网络出版日期: 2014-08-20
A Track-to-track Association Algorithm Based on Maximizing the Consistent Association Number
Received date: 2013-12-11
Revised date: 2014-08-08
Online published: 2014-08-20
航迹关联(TTTA)是多传感器数据融合系统的核心模块之一,是系统误差估计和航迹融合的前提和基础.传感器存在的固有系统误差使得目标位置状态估计与真值发生偏离,容易诱发TTTA错误.传统的基于全局最小距离准则的TTTA算法,需要获得较高精度的系统误差估计,来对航迹数据进行误差补偿.针对传感器具有系统误差环境下的TTTA问题,在对TTTA进行间接评估的基础上,定义了一致关联数的概念,提出了一致关联数最大化的TTTA准则,并在稳健交替迭代的框架下完成算法设计.与距离函数不同,一致关联数是一个离散量,放松了对系统误差估计精度的要求.最后,仿真实验验证了所提算法的有效性.
田威 , 王钺 , 山秀明 , 杨健 . 基于一致关联数最大化的航迹关联算法[J]. 航空学报, 2014 , 35(11) : 3115 -3122 . DOI: 10.7527/S1000-6893.2014.0179
Track-to-track association (TTTA) is a fundamental problem in the multi-sensor data fusion system. It is the precondition for sensor bias estimation and track-to-track fusion. The inherent systematic biases of sensors may cause the position estimates of a target to deviate far from the real target state. TTTA algorithms based upon the global minimum distance criteria require accurate sensor bias estimate to register the sensors. For TTTA problem in the presence of sensor biases, we define a new concept of consistent association number on the basis of indirect evaluation upon the association matrix, propose the criteria of maximal consistent association number, and develop a new TTTA algorithm in the framework of robust alternate iteration. Compared with the distance function, the consistent association number, which is a discrete variable, can relax the high precision requirement for sensor bias estimation. Simulation results demonstrate the effectiveness of the proposed algorithm.
[1] Blackman S S, Popoli R. Design and analysis of modern tracking systems[M]. Boston: Artech House, 1999: 626-629, 689-697.
[2] Singer R A, Kanyuck A J. Computer control of multiple site track correlation[J]. Automatica, 1971, 7(4):455-463.
[3] Li X R, Bar-Shalom Y. Tracking in clutter with nearest neighbor filters: analysis and performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 995-1010.
[4] O'Neil S D, Pao L Y. Multisensor fusion algorithms for tracking[C]//Proceedings of the American Control Conference, 1993: 859-863.
[5] Deb S, Yeddanapudi M, Pattipati K, et al. A generalized S-D assignment algorithm for multisensor-multitarget state estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 523-538.
[6] He Y, Peng Y N, Lu D J. Fuzzy track correlation algorithms for multitarget and multisensory tracking[J]. Acta Electronica Sinica, 1998, 26(3): 15-19.(in Chinese) 何友, 彭应宁, 陆大金. 多目标多传感器模糊双门限航迹相关算法[J]. 电子学报, 1998, 26(3):15-19.
[7] Tian W, Wang Y, Shan X M, et al. Analytic performance prediction of track-to-track association with biased data in multi-sensor multi-target tracking scenarios[J]. Sensors, 2013, 13(9): 12244-12265.
[8] Li Z, Chen S, Leung H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2):496-507.
[9] Levedahl M D. An explicit pattern matching assignment algorithm[C]//Proceedings of SPIE, 2002, 4728: 461-469.
[10] Levedahl M D. Method and system for assigning observations: USA, 7092924[P]. 2006-08-15.
[11] Danford S, Kragel B, Poore A. Joint MAP bias estimation and data association: algorithms[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007, 6699: 1E-1-1E-18.
[12] Danford S, Kragel B, Poore A. Joint MAP bias estimation and data association: simulations[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007, 6699: 15-1-15-14.
[13] Papageorgiou D J, Sergi J D. Simultaneous track-to-track association and bias removal using multistart local search[C]//Proceedings of IEEE Aerospace Conference, 2008: 1-14.
[14] Tian W, Wang Y, Shan X M, et al. Robust sensor registration with the presence of misassociations and ill conditioning[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2013, 11: 2318-2321.
[15] Tian W, Wang Y, Shan X M, et al. Robust method for joint track association and sensor bias estimation[J]. Journal of Tsinghua University: Science and Technology, 2013, 53(7): 946-950. (in Chinese) 田威, 王钺, 山秀明, 等. 稳健的联合TTTA与系统误差估计[J]. 清华大学学报:自然科学版, 2013, 53(7): 946-950.
[16] Tian W, Wang Y, Shan X M, et al. Misassociation detection method based on the residual errors of system bias estimation[J]. Systems Engineering and Electronics, 2013, 35(10): 2062-2068. (in Chinese) 田威, 王钺, 山秀明, 等. 基于系统误差估计残差的错误关联检测方法[J]. 系统工程与电子技术, 2013, 35(10): 2062-2068.
[17] Tian X, Bar-Shalom Y. Sliding window test vs. single time test for track-to-track association[C]//Proceeding of 11th International Conference on Information Fusion, 2008: 1-8.
[18] Lin X, Kirubarajan T, Bar-Shalom Y. Multisensor bias estimation using local tracks without a priori association[C]//Proceedings of SPIE, 2003, 5204: 334-345.
[19] Kaplan L, Bar-Shalom Y, Blair W. Assignment costs for multiple sensor track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 655-677.
[20] Leung H, Blanchette M. A least squares fusion of multiple radar data[C]//Proceedings of Radar, 1994: 364-369.
[21] Mori S, Chong C. Comparison of bias removal algorithms in track-to-track association[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007: 1-9.
[22] Bar-Shalom Y, Li X, Kirubarajan T. Estimation with applications to tracking and navigation[M]. New York: Wiley Online Library, 2001: 268-270.
[23] Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurements versus EKF[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 1015-1022.
/
〈 | 〉 |