高分影像辅助下的航空高光谱严密几何检校方法
收稿日期: 2014-06-03
修回日期: 2014-08-08
网络出版日期: 2014-08-15
A strict geometric calibration method for airborne hyperspectral sensors aided by high resolution images
Received date: 2014-06-03
Revised date: 2014-08-08
Online published: 2014-08-15
惯性测量单元(IMU)与传感器视准轴的偏心角和偏心矢量是造成航空线阵列高光谱数据几何校正误差的主要原因之一。在分析偏心角与偏心矢量误差来源之后提出该误差由IMU主轴与传感器主轴的角度偏差、测区固定偏差、GPS中心与传感器投影中心相对偏差组成,在此基础上建立了较为严密的检校模型。针对模型解算时需要大量高精度控制点的问题,提出了一种高分影像辅助下的亚像元精度控制点自动提取方法。通过多地区、多传感器高光谱航测实验表明,亚像元精度控制点能有效提高模型解算精度。新检校模型可获得亚像元校正精度,推扫式传感器——应用型机载成像光谱仪(AISA)建模中误差约为0.39个像元,摆扫式传感器——实用型模块化成像光谱仪(OMIS)建模中误差约为0.23个像元,校正后的影像可直接进行拼接。
田玉刚 , 杨贵 , 吴蔚 . 高分影像辅助下的航空高光谱严密几何检校方法[J]. 航空学报, 2015 , 36(4) : 1250 -1258 . DOI: 10.7527/S1000-6893.2014.0181
The eccentric angle and eccentricity vector between inertial measurement unit (IMU) and the collimation axe of sensors are the main causes for geometric correction errors of airborne line array hyperspectral Images. In this paper, the errors caused by eccentric angle and eccentricity vector are supposed to consist of the angular deviation between spindles of IMU sensor and hyperspectral camera, fixed position offset, relative position offset between GPS center and sensor projection center firstly, and then a strict geometric calibration model is given. As this new model needs a large number of high-precision control points for calculation, an automatic control point selection method with sub-pixel precision is proposed. Experiments of multi-region and multi-sensor show that sub-pixel control points selection method can improve the accuracy of the calibration model effectively. With this new calibration model, the push-broom sensor (airborne imaging spectroradiometer for applications (AISA)) modeling error is about 0.39 pixels, and the whisk-broom sensor operational modular imaging spectrometer (OMIS) modeling error is about 0.23 pixels. Both of the geometric correction precisions are at sub-pixel level. The images after geometric correction can directly mosaic together.
[1] Xue Y Q. The technical development of airborne scan imaging systems[J]. Journal of Infrared and Millimeter Waves, 1992, 11(3): 169-180 (in Chinese). 薛永祺. 机载扫描成像系统的技术发展[J].红外与毫米波学报, 1992, 11(3): 169-180.
[2] Light D. An airborne direct digital imaging system[J]. Photogrammetric Engineering and Remote Sensing, 2001, 48(11): 1299-1305.
[3] Liu J, Zhang Y S, Wang D H, et al. Geometric rectification of airborne linear array pushbroom imagery supported by INS/DGPS system[J]. Journal of Remote Sensing, 2006, 10(1): 21-26 (in Chinese). 刘军, 张永生, 王冬红, 等. INS/DGPS支持的机载线阵推扫影像几何校正[J]. 遥感学报, 2006, 10(1): 21-26.
[4] Legat K. Approximate direct georeferencing in national coordinates[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(4): 239-255.
[5] Wang S P, Zhu J, Zong D C, et al. Geometrical rectification of hyperspectral image of GPS/INS[J]. Beijing Surveying and Mapping, 2011(1): 57-59 (in Chinese). 王拴平, 朱俊, 宗德春, 等. 基于GPS/INS的高光谱影像几何粗校正[J]. 北京测绘, 2011(1): 57-59.
[6] Xu W M, Wang J Y, Shu R, et al. Theoretical analysis of geometric rectification accuracy for linear pushbroom imaging spectrometer[J]. Journal of Infrared and Millimeter Waves, 2006, 25(2): 109-112 (in Chinese). 徐卫明, 王建宇, 舒嵘, 等. 线阵推扫成像光谱仪几何校正误差的理论分析[J]. 红外与毫米波学报, 2006, 25(2): 109-112.
[7] Bäumker M, Heimes F J. New calibration and computing method for direct georeferencing of image and scanner data using the position and angular data of a hybrid inertial navigation system[C]//Proceedings of OEEPE Workshop on Integrated Sensor Orientation, 2002: 197-212.
[8] Liu Z C, Fang J C. Online calibration of POS error based on double strapdown algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1679-1687 (in Chinese). 刘占超, 房建成. 基于双捷联算法的POS误差在线标定方法[J]. 航空学报, 2012, 33(9): 1679-1687.
[9] Cramer M, Stallmann D. System calibration for direct georeferencing[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(3/A): 79-84.
[10] Hinsken L, Miller S, Tempelmann U, et al. The triangulation of LH systems ADS40 imagery using ORIMA GPS/IMU[J]. International Archives of Photogrammetry remote Sensing and Spatial Information Sciences, 2002, 34(3/A): 156-162.
[11] Li D R, Zhao S M, Lu Y H, et al. Combined block adjustment for airborne three-line CCD scanner images[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 245-250 (in Chinese). 李德仁, 赵双明, 陆宇红, 等. 机载三线阵传感器影像区域网联合平差[J]. 测绘学报, 2007, 36(3): 245-250.
[12] Zhao H T, Zhang B, Zuo Z L, et al. Boresight misalignment and position offset calibration of push-broom hyperspectral sensor integrated POS system[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 973-977 (in Chinese). 赵海涛, 张兵, 左正立, 等. 推扫式高光谱传感器集成的POS系统视准轴及位置偏差检校[J]. 武汉大学学报信息科学版, 2013, 38(8): 973-977.
[13] SchlÄpfer D, Schaepman M, Itten K I. PARGE: parametric geocoding based on GCP calibrated auxiliary data[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Washington D.C: SPIE, 1998: 334-344.
[14] Wang W, Tong X H, Xie F, et al. Geometric correction of OMIS image based on POS data[J]. Remote Sensing Information, 2010(1): 89-93 (in Chinese). 王伟, 童小华, 谢锋, 等. 基于POS数据的OMIS影像几何校正[J]. 遥感信息, 2010(1): 89-93.
[15] Liu R M, Lu Y H, Gong C L, et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55(4): 380-387.
[16] Di Catreina G, Soraghan J J. Adaptive template matching algorithm based on SWAD for robust target tracking[J]. Electronics Letters, 2012, 48(5): 261-262.
[17] Ding L, Goshtasby A, Satter M. Volume image registration by template matching[J]. Image and Vision Computing, 2001, 19(12): 821-832.
[18] Liu Z J, Cao Y F, Zhuang L K, et al. Applied research on airborne SAR and optical image registration based on control line method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2194-2201 (in Chinese). 刘中杰, 曹云峰, 庄丽葵, 等. 基于控制线方法的机载SAR和可见光图像匹配应用研究[J]. 航空学报, 2013, 34(9): 2194-2201.
[19] Kaloud J, Legat K. Theory and reality of direct georeferencing in national coordinates[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 272-282.
/
〈 | 〉 |