电子与控制

基于OpenFlow的AFDX网络虚拟链路动态优先级接纳控制

  • 李铮 ,
  • 李峭 ,
  • 熊颖 ,
  • 熊华钢
展开
  • 北京航空航天大学 电子信息工程学院, 北京 100191
李铮 男, 博士研究生.主要研究方向: 航空电子综合. Tel: 010-82338706 E-mail: zhengli@ee.buaa.edu.cn; 李峭 男, 博士, 讲师.主要研究方向: 航空电子综合、 实时网络. Tel: 010-82338894 E-mail: liqbuaa@ee.buaa.edu.cn; 熊颖 女, 博士研究生.主要研究方向: 航空电子网络. Tel: 010-82338712 E-mail: xy88_4@163.com; 熊华钢 男, 博士, 教授, 博士生导师.主要研究方向: 航空电子综合、 机载网络. Tel: 010-82317202 E-mail: hgxiong@ee.buaa.edu.cn

收稿日期: 2014-05-20

  修回日期: 2014-08-07

  网络出版日期: 2014-08-13

基金资助

国家自然科学基金 (61301086);国家"863"计划 (2011AA110101);航空科学基金(20131951027)

Dynamic Priority Admission Control of Virtual Link in AFDX Based on OpenFlow

  • LI Zheng ,
  • LI Qiao ,
  • XIONG Ying ,
  • XIONG Huagang
Expand
  • School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

Received date: 2014-05-20

  Revised date: 2014-08-07

  Online published: 2014-08-13

Supported by

National Natural Science Foundation of China (61301086); National High-Tech Research and Development Program of China (2011AA110101); Aeronautical Science Foundation of China (20131951027)

摘要

为了在航空电子全双工交换式以太网(AFDX)中更加灵活地对虚拟链路(VL)实行接纳控制,将OpenFlow引入AFDX网络中,建立了相应的网络模型、消息模型和流量模型.利用网络演算方法分析了优先级VL在基于OpenFlow的AFDX网络中的端到端延迟上界,结合粒子群优化算法,提出了动态优先级接纳控制算法.理论分析结果表明:与动态非优先级接纳控制方法和传统静态优先级分配方法相比,本算法的消息延迟分别降低了49.2%和26.4%,并且本算法能够更加灵活地对VL实行接纳控制,提高网络资源的利用率.最后通过仿真对理论分析的结果进行了验证.本算法为提高接纳控制方法的性能提供了参考,增强了AFDX网络的通信效率与实时性能.

本文引用格式

李铮 , 李峭 , 熊颖 , 熊华钢 . 基于OpenFlow的AFDX网络虚拟链路动态优先级接纳控制[J]. 航空学报, 2014 , 35(11) : 3082 -3091 . DOI: 10.7527/S1000-6893.2014.0178

Abstract

To design a more flexible admission control of virtual link (VL) in avionics full duplex switched Ethernet (AFDX), OpenFlow is introduced to AFDX, and the corresponding models are built including network model, message model and traffic model. The end-to-end delay bounds of priority VL in AFDX based on OpenFlow are analyzed with the help of the network calculus theory. Combining the particle swarm optimization, the dynamic priority admission control algorithm is proposed. The analytical results show that compared with the dynamic non-priority admission control method and the traditional static priority assignment method, the end-to-end delays of messages using the proposed algorithm are reduced by 49.2% and 26.4%. And the proposed algorithm can improve the utilization of the network resources by providing a more flexible admission control of VL. In the end, the analytical results are verified by the simulation. The proposed algorithm provides a reference for improving the performance of admission control and enhances the communication efficiency and real-time performance of AFDX.

参考文献

[1] Xiong H G, Wang Z H. Advanced avionics integration techniques[M]. Beijing: National Defense Industry Press, 2009: 160-167. (in Chinese) 熊华钢, 王中华. 先进航空电子综合技术[M]. 北京: 国防工业出版社, 2009: 160-167.

[2] ARINC. Aircraft data network part 7 avionics full duplex switched Ethernet (AFDX) network[S]. Annapolis: Aeronautical Radio, 2005: 9-18.

[3] Chen X, Zhou Y J, Jiang W B, et al. Performance analysis of AFDX protocol and scheduling algorithm[J]. Acta Electronica Sinica, 2009, 37(5): 1000-1005. (in Chinese) 陈昕, 周拥军, 蒋文保, 等. AFDX协议性能分析及调度算法研究[J]. 电子学报, 2009, 37(5): 1000-1005.

[4] Ridouard F, Scharbarg J L, Fraboul C. Probabilistic upper bounds for heterogeneous flows using a static priority queueing on an AFDX network[C]//IEEE International Conference on Emerging Technologies and Factory Automation, 2008: 1220-1227.

[5] Schmitt J, Hurley P, Hollick M, et al. Per-flow guarantees under class-based priority queueing[C]//IEEE Global Telecommunications Conference, 2003: 4169-4174.

[6] Zhou Q, Qu Z L, Lin H Q. Admission control of VL in AFDX under HRT constraints[J]. Chinese Journal of Aeronautics, 2011, 24(2): 195-201.

[7] Egilmez H E, Civanlar S, Tekalp A M. An optimization framework for QoS-enabled adaptive video streaming over OpenFlow networks[J]. IEEE Transactions on Multimedia, 2013, 15(3): 710-715.

[8] Gringeri S, Bitar N, Xia T J. Extending software defined network principles to include optical transport[J]. IEEE Communications Magazine, 2013, 51(3): 32-40.

[9] Mo W Y, He J, Karbassian M M, et al. Quality of transmission awareness in converged electronic and optical networks with OpenFlow[J]. IEEE Communications Letters, 2013, 17(5): 1036-1039.

[10] Luo T, Tan H P, Quek T Q S. Sensor OpenFlow: enabling software-defined wireless sensor networks[J]. IEEE Communications Letters, 2012, 16(11): 1896-1899.

[11] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks[J]. Acm Sigcomm Computer Communication Review, 2008, 38(2): 69-74.

[12] Open Networking Foundation. OpenFlow switch specification version 1.4.0[EB/OL]. (2013-10-15)[2013-11-19]. http://www.opennetworking.org.

[13] ThangaMurugan K A. Software defined networking (SDN) for aeronautical communications[EB/OL]. (2013-10-10)[2014-02-19]. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6719632.

[14] Bauer H, Scharbarg J L, Fraboul C. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4): 521-533.

[15] Cruz R. A calculus for network delay, part I: network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1): 114-131.

[16] Cruz R. A calculus for network delay, part II: network analysis[J]. IEEE Transactions on Information Theory, 1991, 37(1): 132-141.

[17] Boudec J Y L, Thiran P. Network calculus: a theory of deterministic queuing systems for the internet[M]. Berlin: Springer Verlag, 2004: 7-24, 122-125, 175-180.

[18] Scharbarg J L, Ridouard F, Fraboul C. A probabilistic analysis of end-to-end delays on an AFDX avionic network[J]. IEEE Transactions on Industrial Informatics, 2009, 5(1): 38-49.

[19] Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, 1995: 1942-1948.

[20] Shen J, Han L C, Shen Y B. Optimization of airplane primary parameters based on particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1538-1541. (in Chinese) 沈伋, 韩丽川, 沈益斌. 基于粒子群算法的飞机总体参数优化[J]. 航空学报, 2008, 29(6): 1538-1541.

[21] Cruz J B, Chen G, Li D, et al. Particle swarm optimization for resource allocation in UAV cooperative control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004: 1-11.

文章导航

/