流体力学与飞行力学

方转圆对三维侧压进气道的流动特性影响

  • 刘雄 ,
  • 王翼 ,
  • 梁剑寒
展开
  • 国防科学技术大学 高超声速冲压发动机技术重点实验室, 湖南 长沙 410073
刘雄 男, 博士研究生.主要研究方向: 高超声速推进技术. Tel: 0731-84574172 E-mail: liuxiong0914@163.com; 王翼 男, 博士, 副研究员.主要研究方向: 高超声速推进技术. Tel: 0731-84574172 E-mail: wange_nudt@163.com

收稿日期: 2014-02-10

  修回日期: 2014-07-28

  网络出版日期: 2014-08-08

基金资助

国家自然科学基金 (11002157)

Effect of Rectangular-to-circular on Flow Characteristics of Three-dimensional Sidewall Compression Inlet

  • LIU Xiong ,
  • WANG Yi ,
  • LIANG Jianhan
Expand
  • Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Received date: 2014-02-10

  Revised date: 2014-07-28

  Online published: 2014-08-08

Supported by

Natural Science Foundation of China (11002157)

摘要

针对三维侧压进气道开展了方转圆研究,通过数值模拟对比了矩形出口、隔离段方转圆和内收缩段方转圆这3种方案进气道的基本性能和流场结构,分析了方转圆过程对进气道性能和流场结构的影响规律.结果表明:采用方转圆隔离段的三维侧压进气道总体性能要优于原型进气道,而在两个方转圆方案中,将内收缩段和隔离段视为一个整体进行方转圆的方案3,要优于从喉部截面开始方转圆的方案2;3种方案进气道隔离段二次流动的共同特点是在底板附近存在方向相反的两个流向涡,它们的强弱关系决定了底板低能流动的分布;始于侧板前缘根部的方转圆过程较始于喉部的方转圆过程对靠近侧板的流向涡的增强作用更大,这个涡提供的"下卷"作用具有改善角区低能流动的效果.

本文引用格式

刘雄 , 王翼 , 梁剑寒 . 方转圆对三维侧压进气道的流动特性影响[J]. 航空学报, 2014 , 35(11) : 2939 -2948 . DOI: 10.7527/S1000-6893.2014.0172

Abstract

The effect of rectangular-to-circular on the performance and flow field of three-dimensional sidewall compression hypersonic inlet is investigated in this article. The basic performance and flow field of the original inlet with rectangular outlet, the inlet rounding from throat, and the inlet rounding from the front of sidewall root, are compared with each other through numerical simulation. The results reveal that the gross performance of inlets with rectangular-to-circular isolator are better than the original inlet, and in the two rectangular-to-circular inlets, Scheme 3 that takes the internal converging portion and isolator as a whole is superior to Scheme 2 that rounding from throat, the common characteristics of secondary flow in the isolator of the three schemes is that nearby the bottom wall exist two opposite flow-directional vortices, and the relationship between them determines the distribution and development of the bottom low-energy flow region, rectangular-to-circular process from the front of side wall root has a stronger enhancement on the side wall vortex than that from throat, which produces the roll-down effect so that it can improve the corner low-energy flow.

参考文献

[1] Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 1974, 11(9): 589-591.

[2] Holland S D. Mach 10 experimental database of a three-dimensional scramjet inlet flow field, NASA TM 4686[R]. Washington, D.C.: NASA, 1995.

[3] Rodi P E, Trexler C A. The effect of bodyside compression on forward and aft swept sidewall compression inlets at Mach 4, AIAA-1994-2708[R]. Reston: AIAA, 1994.

[4] Panaras A G. Review of the physics of swept-shock/ boundary layer interactions[J]. Progress of Aerospace Science, 1996, 32(2): 173-244.

[5] Kiersey J L, Snow M L. Modular inlet investigation, Report AQR/66-1[R]. Baltimore: Aeronautics Div. Research and Development, Applied Physics Lab., Johns Hopkins University, 1966.

[6] Molder S, Romeskie J M. Modular hypersonic inlets with conical flow, AGARD CP-30[R]. Montreal: McGill University, 1968.

[7] Smart M K. Design of three-dimensional hypersonic inlet with rectangular to elliptical shape transition, AIAA-1998-0960[R]. Reston: AIAA, 1998.

[8] Smart M K. Experimental testing of a hypersonic inlet with rectangular-to elliptical shape transition, AIAA-1999-0085[R]. Reston: AIAA, 1999.

[9] Smart M K, White J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet, AIAA-2002-0508[R]. Reston: AIAA, 2002.

[10] Smart M K, Trexler C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293.

[11] Smart M K, Ruf E G. Free-jet testing of a REST scramjet at off-design conditions, AIAA-2006-2955[R]. Reston: AIAA, 2006.

[12] Gollan R J. Design of modular, shape-transitioning inlets for a conical hypersonic vehicle[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.

[13] Taylor T M. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths, AIAA-2008-2635[R]. Reston: AIAA, 2008.

[14] Gollan R J. Investigation of REST-class hypersonic inlet designs, AIAA-2011-2254[R]. Reston: AIAA, 2011.

[15] Ferlemann P G, Gollan R J. Parametric geometry, structured grid generation, and initial design study for REST-class hypersonic inlets[C]//Jannaf Airbreathing Propulsion Subcommittee Meeting, 2009.

[16] Nan X J, Zhang K Y, Jing Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996. (in Chinese) 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J].航空学报, 2011, 32(6): 988-996.

[17] Nan X J, Zhang K Y, Jing Z G. Experimental study of hypersonic inward turning inlets with innovative basic flowfield[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 90-96.(in Chinese) 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J].航空学报, 2014, 35(1): 90-96.

[18] Fluent Inc. FLUENT user's guide[M]. Pittsburgh: Fluent Inc., 2003.

[19] Moin P. Progress in large eddy simulation of turbulence flows, AIAA-1997-15761[R]. Reston: AIAA, 1997.

[20] Wang Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) 王翼. 高超声速进气道启动问题研究[D]. 长沙: 国防科技大学, 2008.

文章导航

/