固体力学与飞行器总体设计

考虑备件约束的多部件串联系统使用可用度计算方法

  • 王蕴 ,
  • 王乃超 ,
  • 马麟 ,
  • 李铁 ,
  • 邓浩然
展开
  • 1. 北京航空航天大学 可靠性与系统工程学院, 北京 100191;
    2. 北京航空航天大学 可靠性与环境工程技术国防科技重点实验室, 北京 100191
王蕴 女, 硕士研究生。主要研究方向: 备件优化。E-mail: ywang8_09@163.com;王乃超 男, 博士, 讲师, 硕士生导师。主要研究方向: 保障效能分析, 综合保障工程。Tel: 010-82313598 E-mail: tian_jia_zhuang@sina.com;马麟 男, 博士, 副教授, 硕士生导师。主要研究方向: 可靠性工程, 综合保障工程。E-mail: malin@buaa.edu.cn;李铁 男, 硕士研究生。主要研究方向: 保障性工程。E-mail: litie789@163.com;邓浩然 男, 硕士研究生。主要研究方向: 保障性仿真。E-mail: 453302458@qq.com

收稿日期: 2014-05-30

  修回日期: 2014-07-25

  网络出版日期: 2014-08-04

基金资助

国家自然科学基金 (61304148)

Operational availability calculation methods of various series systems under the constraint of spare parts

  • WANG Yun ,
  • WANG Naichao ,
  • MA Lin ,
  • LI Tie ,
  • DENG Haoran
Expand
  • 1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
    2. National Science Key Laboratory of Reliability and Environmental Engineering Technology, Beihang University, Beijing 100191, China

Received date: 2014-05-30

  Revised date: 2014-07-25

  Online published: 2014-08-04

Supported by

Natural Science Foundation of China (61304148)

摘要

使用可用度是衡量装备系统保障效能的重要指标,而备件供应是保障活动中的关键,故在计算系统的使用可用度时有必要考虑备件约束对其的影响。在现有的使用可用度计算方法中,马尔可夫更新理论很少用于分析考虑备件的系统,基于库存理论的可用度计算模型没有考虑备件供应延误对系统更换维修活动的影响。为了解决以上问题,首先将整个系统故障与维修过程分为故障系统的更换维修和故障件的维修周转2个子过程,并分析了2个子过程之间的影响关系;然后给出一种考虑备件约束的多部件串联系统使用可用度计算模型;最后实例分析表明,该模型可以方便地计算多部件串联系统的使用可用度,且与库存理论中的计算模型相比,该模型计算结果与仿真结果更为接近。

本文引用格式

王蕴 , 王乃超 , 马麟 , 李铁 , 邓浩然 . 考虑备件约束的多部件串联系统使用可用度计算方法[J]. 航空学报, 2015 , 36(4) : 1195 -1201 . DOI: 10.7527/S1000-6893.2014.0167

Abstract

Operational availability is one of the important indicators to measure support effectiveness of system, and spare parts supply is the key of support activities, so it is necessary to consider the spare parts when calculating operational availability. In the existing operational availability calculation methods, Markov renewal theory is rarely used for analyzing systems with spare parts; in the meantime, the availability calculation model based on inventory theory ignores that the replace and repair activity will be affected by delay in the supply of spare parts. To solve the above problem, firstly, the whole process is divided into two sub-processes, i.e., the replace and repair process of fault system and the maintenance and turnover process of failure parts, then the influence between the two sub-processes is analyzed. Secondly, a model that can compute the operational availability of multi-part series system with spare parts is given. Finally, numerical example shows that the operational availability of multi-part series system can be easily calculated by this model, compared with the calculating results of the model based on inventory theory, the results of this method are closer to the simulation results.

参考文献

[1] Yin H L. Reliability, maintainability and supportability terms[M]. Beijing: National Defence Industry Press, 2002: 29-30 (in Chinese). 殷鹤龄. 可靠性维修性保障性术语集[M]. 北京: 国防工业出版社, 2002: 29-30.
[2] Zhang F Y. Probability statistics and random process[M]. 2nd ed. Beijing: Beihang University Press, 2012: 39-40 (in Chinese). 张福渊. 概率统计及随机过程[M]. 2版. 北京: 北京航空航天大学出版社, 2012: 39-40.
[3] Dinesh Kumar U, Knezevic J. Availability based spare optimization using renewal process[J]. Reliability Engineering and System Safety, 1998, 59(2): 217-223.
[4] Fawzi B B, Hawkes A G. Availability of an R-out-of-N system with spares and repairs[J]. Journal of Applied Probability, 1991, 28(2): 397-408.
[5] Frostig E, Levikson B. On the availability of R out of N repairable systems[J]. Naval Research Logistics (NRL), 2002, 49(5): 483-498.
[6] Smith M A J, Dekker R. Preventive maintenance in a 1 out of n system: the uptime, downtime and costs[J]. European Journal of Operational Research, 1997, 99(3): 565-583.
[7] de Smidt-Destombes K S, van der Heijden M C, van Harten A. Availability of k-out-of-N systems under block replacement sharing limited spares and repair capacity[J]. International Journal of Production Economics, 2007, 107(2): 404-421.
[8] de Smidt-Destombes K S, van der Heijden M C, van Harten A. On the availability of a k-out-of-N system given limited spares and repair capacity under a condition based maintenance strategy[J]. Reliability Engineering and System Safety, 2004, 83(3): 287-300.
[9] Zhang T, Wu X Y, Guo B, et al. Operational availability model for repairable system under (m, NG) maintenance policy[J]. Journal of Systems Engineering, 2007, 22(6): 627-633 (in Chinese). 张涛, 武小悦, 郭波, 等. (m, NG)维修策略下可修系统的使用可用度模型[J]. 系统工程学报, 2007, 22(6): 627-633.
[10] Xie W X, Xue J Y. Calculation of availability of repairable control systems based on stochastic Petri nets[J]. Journal of Xi'an Jiaotong University, 1997, 31(11): 83-87 (in Chinese). 谢文祥, 薛钧义. 基于随机Petri网可修控制系统的可用度计算[J]. 西安交通大学学报, 1997, 31(11): 83-87.
[11] Xie W X, Ru F, Xue J Y. Modeling and analysis of availability of redundant repairable systems based on stochastic Petri nets[J]. Journal of Systems Engineering, 1998, 13(4): 93-97 (in Chinese). 谢文祥, 茹锋, 薛钧义. 冗余可修系统可用度的随机Petri网建模与分析[J]. 系统工程学报, 1998, 13(4): 93-97.
[12] Zhang T, Guo B, Wu X Y, et al. Spare availability model for system with various configurations[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 203-207 (in Chinese). 张涛, 郭波, 武小悦, 等. 任意结构系统的备件可用度评估模型[J]. 航空学报, 2005, 26(2): 203-207.
[13] Kong D L, Wang S P. Study on availability analysis for repairable system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2): 129-132 (in Chinese). 孔德良, 王少萍. 可修系统的可用度分析方法研究[J]. 北京航空航天大学学报, 2002, 28(2): 129-132.
[14] Sherbrooke C C. Optimal inventory modeling of systems: multi-echelon techniques second edition[M]. Dordrecht: Kluwer Academic Publishers, 2004: 37-41.
[15] Zhu S Q, Li S A, Li W J, et al. A spare parts providing model with the maximal availability[J]. Journal of Air Force Engineering University: Natural Science Edition, 2005, 6(2): 22-24 (in Chinese). 朱绍强, 李寿安, 李为吉, 等. 具有最大可用度的航空备件供应模型[J]. 空军工程大学学报: 自然科学版, 2005, 6(2): 22-24.
[16] Cao J H, Cheng K. Introduction to mathematical reliability[M]. Beijing: Higher Education Press, 2012: 206-212 (in Chinese). 曹晋华, 程侃. 可靠性数学引论[M]. 北京: 高等教育出版社, 2012: 206-212.

文章导航

/