综述

新型高温/超高温热障涂层及制备技术研究进展

  • 郭洪波 ,
  • 宫声凯 ,
  • 徐惠彬
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
郭洪波 男,博士,教授,博士生导师。主要研究方向:高性能发动机热防护涂层;薄膜科学与技术;电子束/离子束表面改性。 Tel:010-82317117 E-mail:guo.hongbo@buaa.edu.cn

收稿日期: 2014-04-24

  修回日期: 2014-07-16

  网络出版日期: 2014-07-23

基金资助

国家自然科学基金(375888,51201005)

Research Progress on New High/ultra-high Temperature Thermal Barrier Coatings and Processing Technologies

  • GUO Hongbo ,
  • GONG Shengkai ,
  • XU Huibin
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-24

  Revised date: 2014-07-16

  Online published: 2014-07-23

Supported by

National Natural Science Foundation of China (375888, 51201005)

摘要

简单介绍了先进航空发动机高温/超高温热障涂层(TBCs)的研究背景、意义和现状;简述了近年来国际上在新一代超高温TBCs方面的研究进展。重点介绍了近年来北京航空航天大学在新型高温/超高温TBCs方面的研究成果,包括新型超高温、高隔热陶瓷隔热层材料,1 150 ℃以上新型抗高温氧化金属粘结层材料,以及电子束物理气相沉积(EB-PVD)、等离子体激活EB-PVD(PA EB-PVD)和等离子物理气相沉积(PS-PVD)等新型制备工艺。最后对TBCs在未来高性能航空发动机上的应用及发展趋势进行了展望。

本文引用格式

郭洪波 , 宫声凯 , 徐惠彬 . 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014 , 35(10) : 2722 -2732 . DOI: 10.7527/S1000-6893.2014.0161

Abstract

The research background, significance and current status of high/ultra-high temperature thermal barrier coatings (TBCs) for aero-engine applications are briefly highlighted. The recent research progress in new generation TBCs for ultra-high temperature applications is reviewed. Emphasis is laid on the recent research achievements of Beihang University which involves new ceramic topcoat materials with superior-high temperature capabilities and thermal barrier performances, novel metallic bond coat materials with good oxidation resistance at temperatures above 1 150 ℃, new processing technologies of TBCs including electron beam physical vapor deposition (EB-PVD), plasma activated EB-PVD (PA EB-PVD) and plasma spray physical vapor deposition (PS-PVD). Eventually, the prospective trends of TBCs for advanced aero-engine applications are forecast.

参考文献

[1] Goward G W. Progress in coatings for gas turbine airfoils[J]. Surface & Coatings Technology, 1998, 108(1/2/3): 73-79.
[2] Milller R A. Thermal barrier coatings for aircraft engines: history and directions[J]. Journal of Thermal Spray Technology, 1997, 6(1): 35-42.
[3] Rebollo N R, Fabrichnay O, Levi C G. Phase stability of Y+Gd co-doped zirconia[J]. Zeitschrift Fur Metallkunde, 2003, 94(3): 163-170.
[4] Rahaman M N, Gross J R, Dutton R E, et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications[J]. Acta Materialia, 2006, 54(6): 1615-1621.
[5] Leoni M, Jones R, Scardi P. Phase stability of scandia-yttria-stabilized zirconia TBCs[J]. Surface & Coatings Technology, 1998, 108-109: 107-113.
[6] Friedrich C, Gadow R, Schirmer T. Lanthanum hexaaluminate—a new material for atmospheric plasma spraying of advanced thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2001, 10(4): 592-859.
[7] Bansal N P, Zhu D M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings[J]. Surface & Coatings Technology, 2008, 202(12): 2698-2703.
[8] Lehmann H, Pitzer D, Pracht G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system[J]. Journal of the American Ceramic Society, 2003, 86(8): 1338-1344.
[9] Duderstadt E C, Bangalore A N. Thermal barrier coating system with intermetallic overlay bond coat: U.S. Patent, 5238752[P]. 1993-08-24.
[10] Schnitt-Thoms K G, Hertter M. Improved oxide resistance of thermal barrier coatings[J]. Surface & Coatings Technology, 1999, 120-121: 84-88.
[11] Felten E J, Pettit F S. Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al Alloys[J]. Oxidation of Metals, 1976, 10(1): 189-233.
[12] Pint B A, Treska M, Hobbst L W. The effect of various oxide dispersions on the phase composition and morphology of A12O3 scales grown on β-NiAl[J]. Oxidation of Metals, 1997, 47(1-2): 1-20.
[13] Pint B A. The oxidation behavior of oxide-dispersed β-NiAl: I. short-term performance at 1 200 ℃[J]. Oxidation of Metals, 1998, 49(5-6): 531-559.
[14] Haynes J A, Pint B A, More K L, et al. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings[J]. Oxidation of Metals, 2002, 58(5-6): 513-544.
[15] Hara M, Matsuda Y, Fukumoto M, et al. Formation of Ni-aluminide coating containing Hf by molten-salt electrodeposition and cyclic-oxidation resistance[J]. Oxidation of Metals, 2008, 70: 295-306.
[16] Barrett C A. Effect of 0.1 at.% zirconium on the cyclic oxidation resistance of β-NiAl[J]. Oxidation of Metals, 1988, 30(5-6): 361-390.
[17] Hamadi S, Bacos M P, Poulain M, et al. Oxidation resistance of a Zr-doped NiAl coating thermochemically deposited on a nickel-based superalloy[J]. Surface & Coatings Technology, 2009, 204: 756-760.
[18] Jedlinski J, Mrowec S. The influence of implanted yttrium on the oxidation behaviour of β-NiAl[J]. Materials Science and Engineering, 1987, 87: 281-287.
[19] Mrowec S, Jedlinski J, Gil A. The influence of certain reactive elements on the oxidation behaviour of chromia-and alumina-forming alloys[J]. Materials Science and Engineering: A, 1989, 120: 169-173.
[20] Zhang G Y, Zhang H, Guo J T. Effects of Dy on cyclic oxidation resistance of NiAl alloy[J]. Surface and Coatings Technology, 2006, 201: 2270-2275.
[21] Wang F H, Lou H. Hot corrosion of yttrium-modified aluminide coatings[J]. Materials Science and Engineering: A, 1989, 121: 387-393.
[22] Wang W, Yu P, Wang F H. The effect of yttrium addition on the isothermal oxidation behavior of sputtered K38 nanocrystalline coating at 1 273 K in air[J]. Surface & Coatings Technology, 2007, 201: 7425-7431.
[23] Cao X Q, Vaβen R, Tietz F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides[J]. Journal of the European Ceramic Society, 2006, 26: 247-251.
[24] Chen X L, Zhang Y F, Zhong X H, et al. Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure[J]. Journal of the European Ceramic Society, 2010, 30(7): 1649-1657.
[25] Cao X Q, Vassen R, Jungen W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating[J]. Journal of the American Ceramic Society, 2001, 4(9): 2086-2090.
[26] Wu R F, Pan W, Ren X R, et al. An extremely low thermal conduction ceramic: RE9.33(SiO4)6O2 silicate oxyapatite[J]. Acta Materialia, 2012, 60(15): 5536-5544.
[27] Xu Q, Pan W, Wang J D, et al. Preparation and thermophysical properties of Dy2Zr2O7 ceramic for thermal barrier coatings[J]. Materials Letters, 2005, 59(22): 2804-2807.
[28] Xu Q, Pan W, Wang J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings[J]. Journal of the American Ceramic Society, 2006, 89(1): 340-342.
[29] Lu X Y, Zhu R Z, He Y D. Reactive-element effect of electrodeposited Y2O3 oxide films on the oxidation of Fe-25Cr and Fe-25Cr-10Al alloys[J]. Oxidation of Metals, 1995, 43(3/4): 353-362.
[30] Li Z, Gao W, Li S, et al. Oxidation behavior of a Ti3Al-Nb alloy with surface thin oxide films[J]. Oxidation of Metals, 2001, 56(5/6): 495-516.
[31] Ji X J, Gong S K, Xu H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et Astronautic Sinica, 2007, 28(1): 196-200. (in Chinese) 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层 YSZ 陶瓷层晶格畸变的影响[J]. 航空学报, 2007, 28(1): 196-200.
[32] Zhang H J. Preparation and thermal cycling properties study of the multicomponent rare earth oxides doped zirconia thermal barrier coatings[D]. Beijing: Beihang University, 2009. (in Chinese) 张红菊. 多元稀土氧化物掺杂二氧化锆基热障涂层的制备及热循环性能研究[D]. 北京:北京航空航天大学, 2009.
[33] Ma W, Gong S K, Xu H B, et al. The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD[J]. Surface & Coatings Technology, 2006, 200(16-17): 5113-5118.
[34] Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions[J]. Scripta Materialia, 2006, 54(8): 1505-1508.
[35] Ma W, Gong S K, Li H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surface & Coatings Technology, 2008, 202(12): 2704-2708.
[36] Guo L, Guo H B, Gong S K, et al. Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39(8): 9009-9015.
[37] Guo H B, Zhang T, Wang S X, et al. Effect of Dy on oxide scale adhesion of NiAl coatings at 1 200 ℃[J]. Corrosion Science, 2011, 53: 2228-2232.
[38] Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1 200 ℃[J]. Corrosion Science, 2013, 66: 125-135.
[39] Zhang T, Guo H B, Gong S K, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: a combined first-principles and experimental studies[J]. Corrosion Science, 2013, 66: 59-66.
[40] Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 29(9/10): 18-26. (in Chinese) 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 29(9/10): 18-26.
[41] Guo H B, Vassen R, Stover D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density[J]. Surface & Coatings Technology, 2004, 186(3): 353-363.
[42] Xu H B, Guo H B, Liu F S, et al. Development of gradient thermal barrier coatings and their hot-fatigue behavior[J]. Surface and Coatings Technology, 2000, 130(1): 133-139.
[43] Muehlberger E, Meyer P. LPPS-thin film processes: overview of origin and future possibilities[C]//Thermal Spray, 2009: 737-740.
[44] Von Niessen K, Gindrat M. Vapor phase deposition using a plasma spray process[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(6): 133-141.
[45] Hospach A, Mauer G, Vaβen R, et al. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF)[J]. Journal of Thermal Spray Technology, 2011, 20(1-2): 116-120.
[46] Mauer G, Hospach A, Vaβen R. Process development and coating characteristics of plasma spray-PVD[J]. Surface & Coatings Technology, 2013, 220: 219-224.
[47] Huang H, Eguchi K, Kambara M. Ultrafast thermal plasma physical vapor deposition of yttria-stabilized zirconia for novel thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2006, 15(4): 83-91.
文章导航

/