论文

涡轮叶片蠕变损伤行为及固溶处理对叶片材料性能的影响

  • 王小蒙 ,
  • 王天佑 ,
  • 赵子华 ,
  • 张峥
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
王小蒙 男,博士研究生。主要研究方向:高温合金的蠕变损伤行为及修复机理。 Tel:010-82339085 E-mail:wxm_1314@163.com;张峥 男,教授,博士生导师。主要研究方向:金属材料的力学性能和疲劳断裂,机械装备失效分析预测预防,失效分析案例库和专家系统。 Tel:010-82339485 E-mail:zhangzh@buaa.edu.cn

收稿日期: 2014-04-18

  修回日期: 2014-07-07

  网络出版日期: 2014-07-19

基金资助

中航工业产学研创新基金(cxy2010BH06)

Creep Damage Behavior for Serviced Turbine Blades and Effects of Solutioning on Blade Materials

  • WANG Xiaomeng ,
  • WANG Tianyou ,
  • ZHAO Zihua ,
  • ZHANG Zheng
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-18

  Revised date: 2014-07-07

  Online published: 2014-07-19

Supported by

Innovation Fund of UniversityIndustry Cooperation Project of Aviation Industry Corporation of China (cxy2010BH06)

摘要

涡轮叶片是航空发动机及地面燃气轮机的重要热端部件,研究其损伤行为对涡轮叶片的制造及修复工作均有重要的意义。本文研究了长时与短时服役涡轮叶片的蠕变损伤行为,发现二者在蠕变空洞的形成机理上大致相同,而γ'相与碳化物的退化反应则有所差异,长时服役涡轮叶片的γ'相形貌更加粗大且不规则。对于碳化物,长时服役叶片的碳化物发生了由一次MC型向二次M23C6型的分解,而短时服役叶片的碳化物发生了由MC(1)型向MC(2)型的转化。此外,针对两种不同的叶片材料(K002和GTD -111高温合金),研究了不同的固溶处理制度对γ'相溶解行为的影响,发现提高固溶温度和增加固溶保温时间可以促进两种材料γ'相的溶解行为;而随着固溶时间的增加,两种材料的溶解激活能均逐渐增大,K002合金在不同固溶保温时间中的溶解激活能均大于GTD -111合金。

本文引用格式

王小蒙 , 王天佑 , 赵子华 , 张峥 . 涡轮叶片蠕变损伤行为及固溶处理对叶片材料性能的影响[J]. 航空学报, 2014 , 35(10) : 2784 -2793 . DOI: 10.7527/S1000-6893.2014.0141

Abstract

The turbine blades are usually utilized in hot sections of aero-engines and industrial gas turbines; therefore, study of the damaged behavior of turbine blade for the manufacture and repair of turbine blade is extremely meaningful. The creep damage behavior for long-term and short-term serviced turbine blades was investigated. There is a similar mechanism for the occurrence of creep-induced cavities between the long-term and short-term serviced blades. However, the difference of the degeneration of γ' precipitates and carbides for the two kinds of blades was found. γ' precipitates for the long-term serviced blade had a more irregular and coarser morphology than the short-term serviced blade. There existed a decomposition of carbides from MC type to M23C6 type for the long-term serviced blade, whereas, for the short-term serviced blade the decomposition of carbides was from MC(1) type to MC(2) type. Likewise, effects of different solutioning schedules on two kinds of blade materials (K002 and GTD-111 superalloys) were studied. As a result, increasing the solution temperature and holding time can promote the occurrence of γ' dissolution. The dissolution activation energies for two kinds of alloys were increased with the increase of holding time. The values of dissolution activation energy for K002 alloy with different holding times were greater than those for GTD -111 alloy.

参考文献

[1] Guo J T. Materials science and engineering for superalloys: Book 1[M]. Beijing: Science Press, 2008: 1-17. (in Chinese) 郭建亭. 高温合金材料学: 上册[M]. 北京: 科学出版社,2008: 1-17.
[2] Wangyao P, Korath T, Harnvirojkul T, et al. Effect of re-heat treatment conditions on microstructural refurbishment of nickel based superalloy turbine blades, IN-738, after long-term service[J]. Journal of Metals, Materials and Minerals, 2004, 14(1): 49-59.
[3] Koul A, Castillo R. Assessment of service induced microstructural damage and its rejuvenation in turbine blades[J]. Metallurgical Materials Transactions A, 1988, 19(8): 2049-2066.
[4] Sajjadi S A, Zebarjad S M, Guthrie R I L, et al. Microstructure evolution of high-performance Ni-base superalloy GTD -111 with heat treatment parameters[J]. Journal of Materials Process Technology, 2006, 175(1): 376-381.
[5] Wangyao P, Lothongkum G, Krongtong V, et al. Effect of heat treatments after HIP process on microstructure refurbishment in cast nickel-based superalloy, IN-738[J]. Journal of Metals, Materials and Minerals, 2005, 15(2): 69-79.
[6] Wangyao P, Krongtong V, Homkrajai W, et al. Comparing rejuvenated microstructures after HIP process and different heat treatments in cast nickel base superalloys, IN-738 and GTD -111 after long-term service[J]. Acta Metallurgica Slovaca, 2006, 12(1): 23-32.
[7] Persson C, Persson P O. Evaluation of service-induced damage and restoration of cast turbine blades[J]. Journal of Materials Engineering and Performance, 1993, 2(4): 565-569.
[8] Zhou Y, Zhang Z, Zhao Z H, et al. Effects of HIP temperature on the microstructural evolution and property restoration of a Ni-based superalloy[J]. Journal of Materials Engineering Performance, 2013, 22(1): 215-222.
[9] Zhou Y, Zhang Z, Zhao Z H, et al. Morphological evolution of γ' precipitates in a nickel-based superalloy during various solution treatments[J]. Rare Metals, 2012, 31(3): 221-226.
[10] Zhou Y, Rao S X, Zhang Z, et al. Interaction of hot isostatic pressing temperature and hydrostatic pressure on the healing of creep cavities in a nickel-based superalloy[J]. Materials & Design, 2013, 49: 25-27.
[11] Zhou Y, Zhang Z, Zhao Z H, et al. Healing behavior of creep induced cavities during hot isostatic pressing of nickel based superalloy[J]. Materials Science and Technology, 2012, 28(8): 1018-1021.
[12] Zhou Y, Zhang Z, Zhong Q P, et al. Model for healing of creep cavities in nickel-based superalloys under hot isostatic pressing[J]. Computational Materials Science, 2012, 65: 320-323.
[13] Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy[J]. Materials Science and Engineering: A, 2012, 543: 121-128.
[14] Qin X Z, Guo J T, Yuan C, et al. Effects of long-term thermal exposure on the microstructure and properties of a cast Ni-base superalloy[J]. Metallurgical and Materials Transactions A, 2007, 38(12): 3014-3022.
[15] Zheng Y R, Cai Y L. Ni5Hf transformation and secondary MC(2) formation in a nickel base superalloy containing Hf[J]. Acta Metallurgica Sinica, 1980(2): 151-158. (in Chinese) 郑运荣, 蔡玉林. 含Hf铸造镍基高温合金中Ni5Hf的转变和次生MC(2)的形成[J]. 金属学报, 1980(2): 151-158.
[16] Shu D L. Mechanical performances of engineering materials[M]. Beijing: China Machine Press, 2003: 164-165. (in Chinese) 束德林. 工程材料力学性能[M]. 北京: 机械工业出版社, 2003: 164-165.
文章导航

/