论文

位错对形变304亚稳态不锈钢中奥氏体的电化学性能的影响

  • 谢金鹏 ,
  • 骆红云 ,
  • 吕金龙 ,
  • 叶康琳
展开
  • 北京航空航天大学 材料科学与工程学院 航空航天材料和性能重点实验室, 北京 100191
谢金鹏 男,硕士研究生。主要研究方向:304不锈钢位错及电化学性能。 E-mail:jarysjp@163.com;骆红云 女,博士,博士生导师。主要研究方向:声发射技术应用,超细晶不锈钢制备及性能,块状纳米材料。 Tel:010-82339905 E-mail:luo7128@163.com;吕金龙 男,博士。主要研究方向:超细/纳米晶304亚稳不锈钢制备及性能。 E-mail:ljlbuaa@126.com;叶康琳 男,硕士研究生。主要研究方向:超细晶不锈钢力学行为及热稳定性。 E-mail:ye_kanglin@163.com

收稿日期: 2014-04-21

  修回日期: 2014-07-09

  网络出版日期: 2014-07-23

基金资助

国家自然科学基金(51175023)

Effect of Dislocation on the Electrochemical Property of Austenite in Deformed 304 Stainless Steels

  • XIE Jinpeng ,
  • LUO Hongyun ,
  • LYU Jinlong ,
  • YE Kanglin
Expand
  • Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-21

  Revised date: 2014-07-09

  Online published: 2014-07-23

Supported by

National Natural Science Foundation of China (51175023)

摘要

AISI 304亚稳态奥氏体不锈钢形变时容易发生相变,为避免产生相变马氏体而专注于研究位错的影响,采用局部电化学技术研究了拉伸应变分别为0%、10%、20%、30%和40%时的AISI 304不锈钢中奥氏体晶粒的电化学性能的变化规律,并分析了位错密度及位错组态对阻抗谱和动电位极化曲线等电化学性能的影响机理。研究结果表明:奥氏体的阻抗随位错密度的增大而降低,在低应变水平下位错密度的增大对阳极电流密度的降低有着重要作用;阳极电流密度随应变水平增加而增加,达到一个最大值后显著下降。通过扫描开尔文探针(SKP)的测量结果,计算得知位错堆积数比位错密度对阳极电流密度的影响更为显著,尤其是对于高应变水平不锈钢。

本文引用格式

谢金鹏 , 骆红云 , 吕金龙 , 叶康琳 . 位错对形变304亚稳态不锈钢中奥氏体的电化学性能的影响[J]. 航空学报, 2014 , 35(10) : 2857 -2864 . DOI: 10.7527/S1000-6893.2014.0156

Abstract

AISI 304 metastable austenite stainless steel transforms to martensile easily under deformation. For focus on the effects induced by dislocation rather than transformed martensite, local electrochemical techniques were used to measure the electrochemical properties on austenite grain of AISI 304 stainless steel under tensile strains of 0%, 10%, 20%, 30% and 40%. The effects of dislocation density and configuration on electrochemical impedance spectra and dynamic potential polarization curves of strained samples were investigated. The results show that the impedance of the austenite reduced with the increase of the dislocation density especially at lower strain level. The anodic current density increased with the strain level, passed over a maximum and then fell significantly. The number of dislocation in a pile-up which was calculated from the results of Scanning Kelvin probe (SKP) played a more crucial role in the change of anodic current density than dislocations density, especially at high strain level.

参考文献

[1] Wachter O, Brummer G. Experiences with austenitic steels in boiling water reactors[J]. Nuclear Engineering and Design, 1997, 168(1-3): 35-52.
[2] Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosion resistance of stainless steels[J]. Corrosion Science, 2007, 49(4): 1933-1948.
[3] Estrin Y, TóthL S, Molinari A, et al. A dislocation-based model for all hardening stages in large strain deformation[J]. Acta Materialia, 1998, 46(15): 5509-5522.
[4] Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction[J]. Acta Materialia, 2011, 59(11): 4314-4322.
[5] Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolution process of polycrystalline nickel[J]. Acta Materialia, 2006, 54(8): 2157-2167.
[6] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel[J]. Corrosion Science, 1996, 38(7): 1141-1145.
[7] Mughrabi H, Ungar T. Dislocations in solids[M]. Amsterdam: Elsevier, 2002: 343.
[8] Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations[J]. Journal of Less-Common Metals, 1972, 28(1): 107-118.
[9] Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel[J]. Materials Science and Engineering: A, 2008, 486(1-2): 283-286.
[10] Das A, Tarafder S. Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel[J]. International Journal of Plasticity, 2009, 25(11): 2222-2247.
[11] Huanga Y H, Xuana F Z, Tua S T, et al. Texture and grain growth characteristics in a boron added interstitial free steel after severe cold rolling and annealing[J]. Materials Science and Engineering: A, 2011, 528(3): 1882-1888.
[12] Garcia C, Martin F, Tiedra P D, et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J]. Corrosion Science, 2001, 43(8): 1519-1539.
[13] Nazari A, Mohandesi J A, Tavareh S. Microhardness profile prediction of a graded steel by strain gradient plasticity theory[J]. Computational Materials Science, 2011, 50(5): 1781-1784.
[14] Gutman E M. Mechanochemistry of materials[M]. London: Cambridge International Science Publishing, 1998: 205.
[15] Grubac Z, Metikos-Hukovic M. EIS study of solid-state transformations in the passivation process of bismuth in sulfide solution[J]. Journal of Electroanalytical Chemistry, 2004, 565(1): 85-94.
[16] Qiao Y X, Zheng Y G. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions[J]. Corrosion Science, 2009, 51(5): 979-986
[17] Rangel C M, Silva T M, Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochim Acta, 2005, 50(25-26): 5076-5082.
[18] Lv J L, Luo H Y. Electrochemical investigation of passive film in pre-deformation AISI 304 stainless steels[J]. Applied Surface Science, 2012, 263: 29-37.
[19] Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels[J]. Materials Chemistry and Physics, 2010, 122(1):194-199.
[20] Sato N. Electrochemistry at metal and semiconductor electrodes[M]. Amsterdam: Elsevier, 1998: 79-81.
文章导航

/