论文

7075铝合金在不同温度盐水环境中的腐蚀疲劳行为

  • 刘轩 ,
  • 刘慧丛 ,
  • 李卫平 ,
  • 叶序彬 ,
  • 朱立群
展开
  • 1. 北京航空航天大学 材料科学与工程学院 空天先进材料与服役教育部重点实验室, 北京 100191;
    2. 北京航空材料研究院 检测研究中心, 北京 100095
刘轩 男,硕士研究生。主要研究方向:航空金属材料腐蚀与防护。 Tel:010-82317113 E-mail:liuxuanclark@163.com;刘慧丛 女,博士,副教授,硕士生导师。主要研究方向:材料的腐蚀及表面的功能性涂镀层。 Tel:010-82317113 E-mail:liuhc@buaa.edu.cn;李卫平 女,博士,副教授,硕士生导师。主要研究方向:材料表面涂镀层、轻合金阳极氧化以及表面处理新技术。 Tel:010-82317113 E-mail:liweiping@buaa.edu.cn

收稿日期: 2014-04-16

  修回日期: 2014-06-09

  网络出版日期: 2014-07-17

基金资助

国家自然科学基金(51101010)

Corrosion Fatigue Behavior of 7075 Aluminum Alloy in Saline Water Environment at Different Temperatures

  • LIU Xuan ,
  • LIU Huicong ,
  • LI Weiping ,
  • YE Xubin ,
  • ZHU Liqun
Expand
  • 1. Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Center of Inspection and Research, Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2014-04-16

  Revised date: 2014-06-09

  Online published: 2014-07-17

Supported by

National Natural Science Foundation of China (51101010)

摘要

基于飞机结构材料7075铝合金在沿海地区服役时海水飞溅及曝晒导致的高温腐蚀疲劳损伤问题,研究了7075铝合金在35,55,75 ℃下3.5% NaCl溶液环境中的腐蚀疲劳寿命,并使用扫描电子显微镜(SEM)观察断口形貌,探讨了温度对腐蚀疲劳裂纹萌生扩展的影响机理。结果表明:同一应力水平下,温度越高,腐蚀疲劳寿命越短,300 MPa时35,55,75 ℃下的中值寿命分别为33 001,30 931,15 346次循环。腐蚀损伤和疲劳损伤存在竞争关系,应力水平较高时,腐蚀较轻,试样寿命主要受应力水平影响,疲劳源多从铝合金基体与包铝层结合处萌生;应力水平较低时,腐蚀较严重,疲劳寿命随温度升高明显下降,疲劳源多从腐蚀坑处萌生。断口形貌显示高温环境主要通过加速腐蚀坑的形成来影响疲劳源的萌生,深坑状腐蚀坑应力集中严重,对疲劳性能伤害大。

本文引用格式

刘轩 , 刘慧丛 , 李卫平 , 叶序彬 , 朱立群 . 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为[J]. 航空学报, 2014 , 35(10) : 2850 -2856 . DOI: 10.7527/S1000-6893.2014.0155

Abstract

Based on high-temperature corrosion fatigue injury problems caused by seawater splash and insolation when aircraft structure material 7075 aluminum alloy servicing at coastal area, the corrosion fatigue life of 7075 aluminum alloy in 35, 55, 75 ℃, 3.5% NaCl saline water is studied by corrosion fatigue life test, and the influence of temperature on corrosion fatigue crack initiation and propagation is discussed by fracture morphology observation using scanning electron microscope (SEM). The results indicate that at the same stress level, corrosion fatigue life decreases with the temperature rising, such as the median fatigue life is respectively 33 001, 30 931, 15 346 cycles while temperature is 35, 55, 75 ℃ at the stress of 300 MPa. There is a competitive relationship between corrosion damage and fatigue damage. When at high stress level, corrosion damage is slight and fatigue damage is the main influencing factor of fatigue life; fatigue source usually initiates from the interface between matrix and Al clad. When the stress level is low, corrosion damage gets severe and fatigue life declines sharply with the temperature rising; fatigue source usually initiates from corrosion pitting. Fracture morphology shows that high-temperature environment influences initiation of fatigue source mainly by accelerating the formation of corrosion pitting, and pitting with deep hole shape is often accompanied by severe stress concentration which does great damage to fatigue property.

参考文献

[1] Feng L C, He Y Q, Qiao B, et al. Corrosion and protection of metal and alloy in marine environment[J]. Hot Working Technology, 2013, 42(24): 13-17. (in Chinese) 冯立超, 贺毅强, 乔斌, 等. 金属及合金在海洋环境中的腐蚀与防护[J]. 热加工工艺, 2013, 42(24): 13-17.

[2] Kermanidis A T, Petroyiannis P V, Pantelakis S G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(1): 121-132.

[3] Wang Z P, Xu T J, Su J X. Research on relationship of civil aircraft cargo compartment corrosion and its influencing factors based on data model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 940-948. (in Chinese) 王志平, 徐天杰, 苏景新. 基于数据模型的某型民用飞机货舱区域腐蚀影响因素研究[J]. 航空学报, 2012, 33(5): 940-948.

[4] Mu Z T, Chen D H, Zhu Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579. (in Chinese) 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.

[5] Chen B, Liu J Z, Wang H W, et al. Advance in fatigue behavior for pre-corroded aluminium alloy[J]. Failure Analysis and Prevention, 2011, 6(3): 186-192. (in Chinese) 陈勃, 刘建中, 王浩伟, 等. 腐蚀预损伤铝合金的疲劳行为研究进展[J]. 失效分析与预防, 2011, 6(3): 186-192.

[6] He C W, Cai X S, Li S Q. Corrosion and corrosion fatigue of typical aircraft joints[J]. Corrosion & Protection, 2006, 27(3): 118-121. (in Chinese) 贺崇武, 蔡新锁, 李素强. 飞机典型连接件腐蚀及腐蚀疲劳试验研究[J]. 腐蚀与防护, 2006, 27(3): 118-121.

[7] Cheng Z H. Study on corrosion behaviors of the LY12CZ aluminum alloy plane component[D]. Harbin: Harbin Engineering University, 2006. (in Chinese) 程宗辉. LYl2CZ铝合金飞机构件腐蚀行为研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.

[8] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al clad 7075 and 2024 aluminium alloy in coastal[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(3): 195-202. (in Chinese) 孙霜青, 赵予兵, 郑弃非, 等. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制[J]. 中国腐蚀与防护学报, 2012, 32(3): 195-202.

[9] Chen S J, Yuan Q M, He J P, et al. Experimental evaluation of computing method of instantaneous corrosion rate for 7075 aluminum alloy[J]. Journal of Materials Engineering, 2004(12): 43. (in Chinese) 陈素晶, 袁庆铭, 何建平, 等. 7075铝合金瞬时腐蚀速率的计算和试验验证[J]. 材料工程, 2004(12): 43.

[10] Liu X L, He J P, Chen S J. Electrochemical noise of 7075 aluminum alloy during a simulated atmospheric corrosion process[J]. Corrosion Science and Protection Technology, 2006, 18(5): 386-388. (in Chinese) 刘晓磊, 何建平, 陈素晶. 电化学噪声表征7075铝合金的模拟大气腐蚀过程[J]. 腐蚀科学与防护技术, 2006, 18(5): 386-388.

[11] Burns J T, Gupta V K, Agnew S R, et al. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue, 2013, 55: 268-275.

[12] Hui L, Zhou S, Xu L, et al. Influence of saline environment on fatigue property of pre-corroded aluminum alloy[J]. Journal of Aeronautical Materials, 2012, 32(3): 73-78. (in Chinese) 回丽, 周松, 许良, 等. 盐水环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 航空材料学报, 2012, 32(3): 73-78.

[13] Feng X F. Investigation on corrosion fatigue strength of 2024-T351 alloy in 3.5% NaCl salt solution[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) 冯先锋. 盐水环境下2024-T351铝合金的腐蚀疲劳强度研究[D]. 杭州: 浙江大学, 2014.

[14] GB/T 3075-2008 Metallic materials—fatigue testing—axial-force-controlled method[S]. Beijing: Standards Press of China, 2008. (in Chinese) GB/T 3075-2008 金属材料 疲劳试验 轴向力控制方法[S]. 北京: 中国标准出版社,2008.

[15] GB/T 24176-2009 Metallic materials—fatigue testing—statistical planning and analysis of data[S]. Beijing: Standards Press of China, 2009.(in Chinese) GB/T 24176-2009 金属材料 疲劳试验 数据统计方案与分析方法[S]. 北京: 中国标准出版社,2009.

[16] Huang X G. Mechanism study of pit evolution and crack propagation for corrosion fatigue[D]. Shanghai: Shanghai Jiaotong University, 2013. (in Chinese) 黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究[D]. 上海: 上海交通大学, 2013.

[17] Liu D X. Corrosion and protection of materials[M]. Xi'an: Northwestern Polytechnical University Press, 2006: 185-186. (in Chinese) 刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006: 185-186.

文章导航

/