[1] Keith B W, Judith J W. Structural concepts and materials for lunar exploration habitats[J]. Space, 2006, 12(3): 19-27.
[2] Epaarachchi J A. Effects of static-fatigue (tension) on the tension-tension fatigue life of glass fibre reinforced plastic composites[J]. Composite Structures, 2006, 74(4): 19-40.
[3] Chen X B, Zhang B Y, Xing L Y. Application and development of advanced polymer matrix compoties[J]. Journal of Aeronautical Materials, 2003, 23(10): 198-220. (in Chinese) 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料的发展和应用[J]. 航空材料学报, 2003, 23(10): 198-220.
[4] Chen S J, Shen T N. Development trends of advanced composite in near term[J]. Journal of Materials Engineer, 2004, 29(9): 1-7. (in Chinese) 陈绍杰, 申屠年. 先进复合材料的近期发展趋势[J]. 材料工程, 2004, 29(9): 1-7.
[5] Chen J L, Tong S G. The application of composite materials to pressure vessels[J]. Pressure Vessel Technology, 2001, 118(6): 47-50. (in Chinese) 陈建良, 童水光. 复合材料在压力容器中的应用[J]. 压力容器, 2001, 118(6): 47-50.
[6] Zeng H M. The developments in polymeric composites—the fiber-reinforced resin composites[J]. Journal of Materials Engineer, 1989, 6(5): 6-13. (in Chinese) 增汉民. 高分子复合材料的进展——纤维增强树脂基复合材料[J]. 材料工程, 1989, 6(5): 6-13.
[7] Byrd T, Introduction I, Manager D, et al. From concept to design: progress on the J-2X upper stage engine for the ares launch vehicles[C]//44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 2008: 1-18.
[8] Phil S, Steve C. Refinements in the design of the Ares V cargo launch vehicle for NASA's exploration strategy[C]//44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 2008: 21-23.
[9] Ellis C S, Bay S L, Norman C E, et al. High performance, thin metal lined, composite over wrapped pressure vessel: US, US006401963B1[P]. 2002-06-11.
[10] David J C. Cryogenic technology development for exploration missions[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[11] Achary D C, Biggs R W. Composite development & applications for cryogenic tankage[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2005: 118-121.
[12] Robinson M J. Composite cryogenic propellant tank development[C]//35th AIAA Structures, Structural Dynamics, and Materials Conference, 1994: 544-551.
[13] Harris C E, Starnes J H, Shuart M J. Design and manufacturing of aerospace composite structures, state-of-the-art assessment[J]. Journal of Aircraft, 2002, 39(4): 545-560.
[14] Kaushik M, John C, Kevin R, et al. An integrated systematic approach to linerless composite tank development[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2005: 2089.
[15] Andrews S W. Space delivers composite liquid oxygen tank to AFRL[EB/OL]. (2009-07-23)[2009-07-23]. http://www.space-travel.com/ reports/Andrews_Space_Delivers_Composite_Liquid_ Oxygen_Tank_To_AFRL_999.html.
[16] Steitz D E. NASA tests game changing composite cryogenic fuel tank[EB/OL]. (2013-07-03)[2013-07-28]. http:// www.nasa.gov/press/2013/july/nasa-tests-game-changing-composite-cryogenic-fuel-ank/#.U3HjPEbhdz0.
[17] Dan D, Jeff G. Thermoplastic fluoropolymer composite material for lightweight, long-life, nonflammable tanks and structures[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2007: 2025.
[18] Timmerman J F, Matthew S T. Matrix and fiber influence on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites: Part A, 2002, 33(3): 323-329.
[22] Kim M G, Hong J S, Kim S G, et al. Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2009, 39(4): 647-654.
[20] Vernon T, Bechel A, Mathew N B, et al. Limiting the permeability of composites for cryogenic applications[J]. Composites Science & Technology, 2006, 66(12): 2284-2295.
[21] Vernon T B, Ran Y K, Steven L D. Composites containing barrier layers for reduced permeability at cryogenic temperature[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere, 2006.
[22] Kim M G, Moon J B, Kim C G. Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1620-1627.
[23] Hisashi K, John W C. Numerical modeling of gas leakage through damaged composite laminates[C]//16th International Conference on Composite Materials, 2010.
[24] Currie J L, Lrani R S, Sand J. ASTM STP986 Factor affecting the impact sensitivity of solid polymer materials in contact with liquid oxygen[S]//Flammability and Sensitivity of Materials in Oxygen-enriched Atmospheres: Third Volume. Washington, D. C.: American Society for Testing and Materials, 1998: 233-247.
[25] Vernon T B, Ran Y K, Donaldson S L. Composites containing barrier layers for reduced permeability at cryogenic temperature[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere, 2006.
[26] Wang G, Li X D, Yan R. The study on compatibility of polymer matrix resins with liquid oxygen[J]. Materials Science & Engineering: B, 2006, 132(10): 70-73.