综述

复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术

  • 张辰威 ,
  • 张博明
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
张辰威 男,博士。主要研究方向:纤维增强树脂基复合材料,复合材料结构分析与工艺优化,复合材料应用,高分子材料改性与设计。 E-mail:gerzwei@bjgxjx.com;张博明 男,博士,教授,博士生导师。主要研究方向:纤维增强树脂基复合材料,复合材料结构分析与工艺优化,复合材料应用。 Tel:010-82338756 E-mail:zbm@buaa.edu.cn

收稿日期: 2014-05-08

  修回日期: 2014-07-07

  网络出版日期: 2014-07-16

基金资助

国家"973"计划

Application and Key Technology of Composites Tank in Space Cryogenic Propulsion System

  • ZHANG Chenwei ,
  • ZHANG Boming
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-05-08

  Revised date: 2014-07-07

  Online published: 2014-07-16

Supported by

National Basic Research Program of China

摘要

复合材料低温贮箱的研制与开发是集合了多学科的复杂科学工程。航天技术的发展对航天飞行器性能提出了更高的要求,使得低温推进系统成为了研究重点。为了进一步提高航天器的性能,必须从结构的减重入手,贮箱作为低温推进系统中最大的部件,成为了未来重点发展方向。用碳纤维增强复合材料(CFRPs)代替铝合金用于制备可重复使用飞行器(RLV)的燃料贮箱成为近些年各个航天大国的重点研究方向。本文介绍了复合材料低温贮箱在航天飞行器领域研究与发展的过程,介绍了复合材料低温贮箱的一些典型型号,总结了发展复合材料低温贮箱所需解决的技术问题。

本文引用格式

张辰威 , 张博明 . 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014 , 35(10) : 2747 -2755 . DOI: 10.7527/S1000-6893.2014.0140

Abstract

Research and development of composites cryogenic tank for areospacecraft is a complex engineering technology involving several subject disciplines. Cryogenic propulsion system is an important research direction, due to the high emphasis paying on reducing vehicle weight for space transportation systems. Advanced carbon fiber reinforced composites (CFRPs) are primary candidates for structures, and CFRPs cryogenic tank became the important research project in the space power. One potential application of CFRPs is in the construction of cryogenic fuel tanks for next-generation reusable launch vehicles (RLV). The development process and research of several type composite cryogenic tanks in the field of aerospace vehicle are introduced, and the technical problems of composite cryogenic tank which need to be solved are summed up.

参考文献

[1] Keith B W, Judith J W. Structural concepts and materials for lunar exploration habitats[J]. Space, 2006, 12(3): 19-27.
[2] Epaarachchi J A. Effects of static-fatigue (tension) on the tension-tension fatigue life of glass fibre reinforced plastic composites[J]. Composite Structures, 2006, 74(4): 19-40.
[3] Chen X B, Zhang B Y, Xing L Y. Application and development of advanced polymer matrix compoties[J]. Journal of Aeronautical Materials, 2003, 23(10): 198-220. (in Chinese) 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料的发展和应用[J]. 航空材料学报, 2003, 23(10): 198-220.
[4] Chen S J, Shen T N. Development trends of advanced composite in near term[J]. Journal of Materials Engineer, 2004, 29(9): 1-7. (in Chinese) 陈绍杰, 申屠年. 先进复合材料的近期发展趋势[J]. 材料工程, 2004, 29(9): 1-7.
[5] Chen J L, Tong S G. The application of composite materials to pressure vessels[J]. Pressure Vessel Technology, 2001, 118(6): 47-50. (in Chinese) 陈建良, 童水光. 复合材料在压力容器中的应用[J]. 压力容器, 2001, 118(6): 47-50.
[6] Zeng H M. The developments in polymeric composites—the fiber-reinforced resin composites[J]. Journal of Materials Engineer, 1989, 6(5): 6-13. (in Chinese) 增汉民. 高分子复合材料的进展——纤维增强树脂基复合材料[J]. 材料工程, 1989, 6(5): 6-13.
[7] Byrd T, Introduction I, Manager D, et al. From concept to design: progress on the J-2X upper stage engine for the ares launch vehicles[C]//44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 2008: 1-18.
[8] Phil S, Steve C. Refinements in the design of the Ares V cargo launch vehicle for NASA's exploration strategy[C]//44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, 2008: 21-23.
[9] Ellis C S, Bay S L, Norman C E, et al. High performance, thin metal lined, composite over wrapped pressure vessel: US, US006401963B1[P]. 2002-06-11.
[10] David J C. Cryogenic technology development for exploration missions[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[11] Achary D C, Biggs R W. Composite development & applications for cryogenic tankage[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2005: 118-121.
[12] Robinson M J. Composite cryogenic propellant tank development[C]//35th AIAA Structures, Structural Dynamics, and Materials Conference, 1994: 544-551.
[13] Harris C E, Starnes J H, Shuart M J. Design and manufacturing of aerospace composite structures, state-of-the-art assessment[J]. Journal of Aircraft, 2002, 39(4): 545-560.
[14] Kaushik M, John C, Kevin R, et al. An integrated systematic approach to linerless composite tank development[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2005: 2089.
[15] Andrews S W. Space delivers composite liquid oxygen tank to AFRL[EB/OL]. (2009-07-23)[2009-07-23]. http://www.space-travel.com/ reports/Andrews_Space_Delivers_Composite_Liquid_ Oxygen_Tank_To_AFRL_999.html.
[16] Steitz D E. NASA tests game changing composite cryogenic fuel tank[EB/OL]. (2013-07-03)[2013-07-28]. http:// www.nasa.gov/press/2013/july/nasa-tests-game-changing-composite-cryogenic-fuel-ank/#.U3HjPEbhdz0.
[17] Dan D, Jeff G. Thermoplastic fluoropolymer composite material for lightweight, long-life, nonflammable tanks and structures[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, 2007: 2025.
[18] Timmerman J F, Matthew S T. Matrix and fiber influence on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites: Part A, 2002, 33(3): 323-329.
[22] Kim M G, Hong J S, Kim S G, et al. Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2009, 39(4): 647-654.
[20] Vernon T, Bechel A, Mathew N B, et al. Limiting the permeability of composites for cryogenic applications[J]. Composites Science & Technology, 2006, 66(12): 2284-2295.
[21] Vernon T B, Ran Y K, Steven L D. Composites containing barrier layers for reduced permeability at cryogenic temperature[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere, 2006.
[22] Kim M G, Moon J B, Kim C G. Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1620-1627.
[23] Hisashi K, John W C. Numerical modeling of gas leakage through damaged composite laminates[C]//16th International Conference on Composite Materials, 2010.
[24] Currie J L, Lrani R S, Sand J. ASTM STP986 Factor affecting the impact sensitivity of solid polymer materials in contact with liquid oxygen[S]//Flammability and Sensitivity of Materials in Oxygen-enriched Atmospheres: Third Volume. Washington, D. C.: American Society for Testing and Materials, 1998: 233-247.
[25] Vernon T B, Ran Y K, Donaldson S L. Composites containing barrier layers for reduced permeability at cryogenic temperature[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere, 2006.
[26] Wang G, Li X D, Yan R. The study on compatibility of polymer matrix resins with liquid oxygen[J]. Materials Science & Engineering: B, 2006, 132(10): 70-73.
文章导航

/