[1] Zhao Y Q.Current situation and development trend of titanium alloys[J].Materials China, 2010, 29(5):1-8.(in Chinese) 赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展, 2010, 29(5):1-8.
[2] Cao C X.One generation of material technology, one generation of large aircraft[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):701-706.(in Chinese) 曹春晓.一代材料技术, 一代大型飞机[J].航空学报, 2008, 29(3):701-706.
[3] Zhou J Y, Wang D Q.Study and application of titanium alloy spring[J].Development and Application of Materials, 2011, 26(1):92-95.(in Chinese) 周佳宇, 王德全.钛合金弹簧的研究和应用[J].材料开发与应用, 2011, 26(1):92-95.
[4] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J].Progress in Materials Science, 2009, 54(3):397-425.
[5] Wu Y Z, Guo A H.Development and research status of biomedical titanium alloys[J].Development and Application of Materials, 2010(2):81-85.(in Chinese) 吴义舟,郭爱红.生物医用钛合金发展和研究现状[J].材料开发与应用, 2010(2):81-85.
[6] Yu Z T, Zhou L.Design and development of bio-medical β-type titanium alloys[J].Rare Metals Letters, 2004(1):5-10.(in Chinese) 于涛, 周廉.生物医用型β型钛合金的设计与开发[J].稀有金属快报, 2004(1):5-10.
[7] Long M, Rack H J.Titanium alloys in total joint replacement—a materials science perspective[J].Biomaterials, 1998, 19(18):1621-1639.
[8] Niinomi M.Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering:A, 1998, 243(1-2):231-236.
[9] Rho J Y, Tsui T Y, Pharr G M.Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation[J].Biomaterials, 1997, 18(20):1325-1330.
[10] Rack H J, Qazi J I.Titanium alloys for biomedical applications[J].Materials Science and Engineering:C, 2006, 26(8):1269-1277.
[11] Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications[J].Acta Biomaterialia, 2012, 8(11):3888-3903.
[12] Qian J H.Pure Ti and new Ti alloy for surgical implant application[J].Chinese Journal of Rare Metals, 2001, 25(4):303-306.(in Chinese) 钱九红.外科植入物用纯钛及其合金[J].稀有金属,2001, 25(4):303-306.
[13] Long M, Crooks R, Rack H J.High-cycle fatigue performance of solution-treated metastable-β titanium alloys[J].Acta Materialia, 1999, 47(2):661-669.
[14] Qazi J I, Marquardt B, Allard L F, et al.Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys[J].Materials Science and Engineering:C, 2005, 25(3):389-397.
[15] Kuroda D, Niinomi M, Morinaga M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J].Materials Science and Engineering:A, 1998, 243(1-2):244-249.
[16] Niinomi M.Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr[J].Biomaterials, 2003, 24(16):2673-2683.
[17] Hao Y L, Li S J, Sun S Y, et al.Super-elastic titanium alloy with unstable plastic deformation[J].Applied Physics Letters, 2005, 87(9):091906-091903.
[18] Hao Y L, Li S J, Sun S Y, et al.Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J].Acta Biomaterialia, 2007, 3(2):277-286.
[19] Yang R, Hao Y L.Research and application of high-strength and low modulus bio-medical Ti2448 alloy[J].Advanced Materials Industry, 2009(6):10-13.(in Chinese) 杨锐,郝玉琳.高强度低模量医用钛合金Ti2448的研制与应用[J].新材料产业, 2009(6):10-13.
[20] Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J].Science, 2003, 300(5618):464-467.
[21] Gutkin M Y, Ishizaki T, Kuramoto S, et al.Nanodisturbances in deformed gum metal[J].Acta Materialia, 2006, 54(9):2489-2499.
[22] Gepreel M A, Niinomi M.Biocompatibility of Ti-alloys for long-term implantation[J].Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20:407-415.
[23] Matsumoto H, Watanabe S, Hanada S.Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated[J].Journal of Alloys and Compounds, 2007, 439(1-2):146-155.
[24] Hao Y L, Yang R, Niinomi M, et al.Aging response of the Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J].Metallurgical and Materials Transactions A, 2003, 34(4):1007-1012.
[25] Deng A H.Martensitic transformation of titanium alloys[J].Shanghai Nonferrous Metals, 1999, 20(4):193-199.(in Chinese) 邓安华.钛合金的马氏体相变[J].上海有色金属, 1999, 20(4):193-199.
[26] Hu L, Guo S, Meng Q, et al.Metastable β-type Ti-30Nb-1Mo-4Sn alloy with ultralow Young's modulus and high strength[J].Metallurgical and Materials Transactions A, 2014, 45(2):547-550.
[27] Hao Y L, Li S J, Sun S Y, et al.Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J].Materials Science and Engineering:A, 2006, 441(1-2):112-118.
[28] Kim H Y, Kim J I, Inamura T, et al.Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28)at% Nb alloys[J].Materials Science and Engineering:A, 2006, 438-440(25):839-843.
[29] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J].Acta Materialia, 2006, 54(9):2419-2429.
[30] Ping D H, Mitarai Y, Yin F X.Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy[J].Scripta Materialia, 2005, 52(12):1287-1291.
[31] Guo S, Meng Q, Hu L, et al.Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys[J].Journal of Alloys and Compounds, 2013, 550(15):35-38.
[32] Xu W, Kim K B, Das J, et al.Deformation-induced nanostructuring in a Ti-Nb-Ta-In beta alloy[J].Applied Physics Letters, 2006, 89(3):031906-031903.
[33] Xu W, Wu X, Calin M, et al.Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability[J].Scripta Materialia, 2009, 60(11):1012-1015.
[34] Cai M H, Lee C Y, Kang S, et al.Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy[J].Scripta Materialia, 2011, 64(12):1098-1101.
[35] Hsiung L M, Lassila D H.Shock-induced deformation twinning and omega transformation in tantalum and tantalum-tungsten alloys[J].Acta Materialia, 2000, 48(20):4851-4865.
[36] Nag S, Banerjee R, Srinivasan R, et al. ω -Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-05Fe β titanium alloy[J].Acta Materialia, 2009, 57(7):2136-2147.