论文

Ti-30Nb-1Mo-4Sn合金热机械处理过程中的相组成及力学性能演化

  • 刘倩 ,
  • 孟庆坤 ,
  • 赵新青 ,
  • 胡亮
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
刘倩 女,硕士研究生。主要研究方向:低弹性模量亚稳β钛合金的组织和性能。E-mail:qianqian_0326@126.com ;赵新青 男,博士,教授,博士生导师。主要研究方向:生物医用钛合金,马氏体相变等。Tel:010-82338559 E-mail:xinqing@buaa.edu.cn

收稿日期: 2014-04-15

  修回日期: 2014-06-09

  网络出版日期: 2014-07-16

基金资助

国家自然科学基金(51271010)

Evolution of Phase Constitution and Mechanical Properties of Ti-30Nb-1Mo-4Sn Alloy Subjected to Thermo-mechanical Treatment

  • LIU Qian ,
  • MENG Qingkun ,
  • ZHAO Xinqing ,
  • HU Liang
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-15

  Revised date: 2014-06-09

  Online published: 2014-07-16

Supported by

National Natural Science Foundation of China (51271010)

摘要

采用X射线衍射(XRD)、透射电子显微镜(TEM)观察和力学性能测试,系统研究了具有低弹性模量的亚稳β钛合金Ti-30Nb-1Mo-4Sn(wt%)在热机械处理过程中的相组成与力学性能演化。研究结果表明:固溶态合金具有较低的结构稳定性,拉伸过程中出现应力诱发马氏体相变,导致合金呈现较低的屈服强度;固溶态合金经时效处理后,由于缺乏异质形核点并且时效时间较短,第2相析出很少,其稳定性并没有明显提高,淬火的过程中仍然会发生马氏体相变,因此其屈服强度也不能得到显著提高。合金经冷轧变形后,晶粒显著细化并引入大量形变位错,大量的缺陷为α相析出提供了形核点,因此在时效处理时析出大量细小α强化相之后,合金的屈服强度和断裂强度显著提高。值得注意的是,冷轧态合金选择一个合适的退火温度(350 ℃),可以使时效处理后的强度达到最大值,进一步提高退火温度,发生再结晶,位错密度下降,导致合金强度剧烈下降。

本文引用格式

刘倩 , 孟庆坤 , 赵新青 , 胡亮 . Ti-30Nb-1Mo-4Sn合金热机械处理过程中的相组成及力学性能演化[J]. 航空学报, 2014 , 35(10) : 2826 -2833 . DOI: 10.7527/S1000-6893.2014.0158

Abstract

The evolution of phase constitution and mechanical properties of a low-modulus metastable β-type Ti-30Nb-1Mo-4Sn(wt%) titanium alloy subjected to thermo-mechanical treatment, is systematically investigated using X-ray diffraction apparatus (XRD), transmission electron microscopy (TEM) and mechanical testing. The results indicate that the solution-treated alloy exhibits low structural stability and undergoes stress-induced martensitic transformation, leading to a quite low yield stress. Even though the solution-treated alloys are subjected to aging treatment, the amount of precipitates is small due to the lack of heterogeneous nucleation sites and relatively short duration, leading to the low stability of the alloy. As a result, martensitic transformation occurs during quenching and the strength of the specimens is not improved significantly. After cold rolling, grain refinement takes place and large amount of dislocations is induced which provides sufficient heterogeneous nucleation sites for the α precipitation, therefore, the yield strength and tensile strength of the cold rolled alloy are significantly improved during aging treatment. It is worth noting that the maximum strength can be obtained in the cold rolled plus annealed alloys with a proper annealing temperature (350 ℃). Moreover, the strength of the alloy declines sharply with further increased annealed temperature, which can be attributed to the decrease in the density of dislocations due to recrystallization.

参考文献

[1] Zhao Y Q.Current situation and development trend of titanium alloys[J].Materials China, 2010, 29(5):1-8.(in Chinese) 赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展, 2010, 29(5):1-8.
[2] Cao C X.One generation of material technology, one generation of large aircraft[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):701-706.(in Chinese) 曹春晓.一代材料技术, 一代大型飞机[J].航空学报, 2008, 29(3):701-706.
[3] Zhou J Y, Wang D Q.Study and application of titanium alloy spring[J].Development and Application of Materials, 2011, 26(1):92-95.(in Chinese) 周佳宇, 王德全.钛合金弹簧的研究和应用[J].材料开发与应用, 2011, 26(1):92-95.
[4] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J].Progress in Materials Science, 2009, 54(3):397-425.
[5] Wu Y Z, Guo A H.Development and research status of biomedical titanium alloys[J].Development and Application of Materials, 2010(2):81-85.(in Chinese) 吴义舟,郭爱红.生物医用钛合金发展和研究现状[J].材料开发与应用, 2010(2):81-85.
[6] Yu Z T, Zhou L.Design and development of bio-medical β-type titanium alloys[J].Rare Metals Letters, 2004(1):5-10.(in Chinese) 于涛, 周廉.生物医用型β型钛合金的设计与开发[J].稀有金属快报, 2004(1):5-10.
[7] Long M, Rack H J.Titanium alloys in total joint replacement—a materials science perspective[J].Biomaterials, 1998, 19(18):1621-1639.
[8] Niinomi M.Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering:A, 1998, 243(1-2):231-236.
[9] Rho J Y, Tsui T Y, Pharr G M.Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation[J].Biomaterials, 1997, 18(20):1325-1330.
[10] Rack H J, Qazi J I.Titanium alloys for biomedical applications[J].Materials Science and Engineering:C, 2006, 26(8):1269-1277.
[11] Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications[J].Acta Biomaterialia, 2012, 8(11):3888-3903.
[12] Qian J H.Pure Ti and new Ti alloy for surgical implant application[J].Chinese Journal of Rare Metals, 2001, 25(4):303-306.(in Chinese) 钱九红.外科植入物用纯钛及其合金[J].稀有金属,2001, 25(4):303-306.
[13] Long M, Crooks R, Rack H J.High-cycle fatigue performance of solution-treated metastable-β titanium alloys[J].Acta Materialia, 1999, 47(2):661-669.
[14] Qazi J I, Marquardt B, Allard L F, et al.Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys[J].Materials Science and Engineering:C, 2005, 25(3):389-397.
[15] Kuroda D, Niinomi M, Morinaga M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J].Materials Science and Engineering:A, 1998, 243(1-2):244-249.
[16] Niinomi M.Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr[J].Biomaterials, 2003, 24(16):2673-2683.
[17] Hao Y L, Li S J, Sun S Y, et al.Super-elastic titanium alloy with unstable plastic deformation[J].Applied Physics Letters, 2005, 87(9):091906-091903.
[18] Hao Y L, Li S J, Sun S Y, et al.Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J].Acta Biomaterialia, 2007, 3(2):277-286.
[19] Yang R, Hao Y L.Research and application of high-strength and low modulus bio-medical Ti2448 alloy[J].Advanced Materials Industry, 2009(6):10-13.(in Chinese) 杨锐,郝玉琳.高强度低模量医用钛合金Ti2448的研制与应用[J].新材料产业, 2009(6):10-13.
[20] Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J].Science, 2003, 300(5618):464-467.
[21] Gutkin M Y, Ishizaki T, Kuramoto S, et al.Nanodisturbances in deformed gum metal[J].Acta Materialia, 2006, 54(9):2489-2499.
[22] Gepreel M A, Niinomi M.Biocompatibility of Ti-alloys for long-term implantation[J].Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20:407-415.
[23] Matsumoto H, Watanabe S, Hanada S.Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated[J].Journal of Alloys and Compounds, 2007, 439(1-2):146-155.
[24] Hao Y L, Yang R, Niinomi M, et al.Aging response of the Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J].Metallurgical and Materials Transactions A, 2003, 34(4):1007-1012.
[25] Deng A H.Martensitic transformation of titanium alloys[J].Shanghai Nonferrous Metals, 1999, 20(4):193-199.(in Chinese) 邓安华.钛合金的马氏体相变[J].上海有色金属, 1999, 20(4):193-199.
[26] Hu L, Guo S, Meng Q, et al.Metastable β-type Ti-30Nb-1Mo-4Sn alloy with ultralow Young's modulus and high strength[J].Metallurgical and Materials Transactions A, 2014, 45(2):547-550.
[27] Hao Y L, Li S J, Sun S Y, et al.Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J].Materials Science and Engineering:A, 2006, 441(1-2):112-118.
[28] Kim H Y, Kim J I, Inamura T, et al.Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28)at% Nb alloys[J].Materials Science and Engineering:A, 2006, 438-440(25):839-843.
[29] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J].Acta Materialia, 2006, 54(9):2419-2429.
[30] Ping D H, Mitarai Y, Yin F X.Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy[J].Scripta Materialia, 2005, 52(12):1287-1291.
[31] Guo S, Meng Q, Hu L, et al.Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys[J].Journal of Alloys and Compounds, 2013, 550(15):35-38.
[32] Xu W, Kim K B, Das J, et al.Deformation-induced nanostructuring in a Ti-Nb-Ta-In beta alloy[J].Applied Physics Letters, 2006, 89(3):031906-031903.
[33] Xu W, Wu X, Calin M, et al.Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability[J].Scripta Materialia, 2009, 60(11):1012-1015.
[34] Cai M H, Lee C Y, Kang S, et al.Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy[J].Scripta Materialia, 2011, 64(12):1098-1101.
[35] Hsiung L M, Lassila D H.Shock-induced deformation twinning and omega transformation in tantalum and tantalum-tungsten alloys[J].Acta Materialia, 2000, 48(20):4851-4865.
[36] Nag S, Banerjee R, Srinivasan R, et al. ω -Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-05Fe β titanium alloy[J].Acta Materialia, 2009, 57(7):2136-2147.
文章导航

/