论文

ZnO/Ni-Bi复合光阳极的制备及其光电催化氧化水性能

  • 于浩 ,
  • 谢永红 ,
  • 许頔 ,
  • 项民 ,
  • 刁鹏
展开
  • 北京航空航天大学 材料科学与工程学院, 北京 100191
于浩 男,硕士研究生。主要研究方向:光电催化材料。 Tel:010-82316841 E-mail:yoho1989@163.com;刁鹏 男,博士,教授,博士生导师。主要研究方向:能源材料、太阳能转化与存储、电池材料、电化学与光电化学、纳米材料技术。 Tel:010-82339562 E-mail:pdiao@buaa.edu.cn

收稿日期: 2014-04-22

  修回日期: 2014-07-09

  网络出版日期: 2014-07-11

基金资助

国家自然科学基金(21173016,20973020);北京自然科学基金(2142020);国家教育部博士点专项基金(20101102110002)

Preparation and Photoelectrochemical Water Oxidation Properties of ZnO/Ni-Bi Composite Photoanodes

  • YU Hao ,
  • XIE Yonghong ,
  • XU Di ,
  • XIANG Min ,
  • DIAO Peng
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-04-22

  Revised date: 2014-07-09

  Online published: 2014-07-11

Supported by

National Natural Science Foundation of China (201173016, 20973020);Beijing Natural Science Foundation (2142020);Doctoral Fund of Ministry of Education of China (20101102110002)

摘要

利用沉淀预处理在基底上生长晶种的方法,在氧化铟锡(ITO)导电玻璃表面水热生长出分布均匀、与基底结合牢固、具有较高光电催化分解水制氧性能的ZnO纳米棒。用电助光沉积的方法将电催化剂Ni-Bi与ZnO复合,用扫描电子显微镜(SEM)、X射线衍射(XRD)及紫外可见漫反射光谱对ZnO/Ni-Bi复合光阳极的结构进行了表征,并采用电化学和光电化学技术研究了ZnO/Ni-Bi复合光阳极的光电催化分解水性能,对不同的复合方式、复合时间以及热处理对复合结构催化活性的影响进行了研究。复合Ni-Bi后,ZnO的性能获得了最高40%的提升。光阳极表面沉积的Ni-Bi分离电子空穴抑制其复合,有效地利用了ZnO产生的光生空穴,将水氧化形成氧气,从而显著提高了光照条件下ZnO催化氧化水的效率。

本文引用格式

于浩 , 谢永红 , 许頔 , 项民 , 刁鹏 . ZnO/Ni-Bi复合光阳极的制备及其光电催化氧化水性能[J]. 航空学报, 2014 , 35(10) : 2865 -2872 . DOI: 10.7527/S1000-6893.2014.0148

Abstract

ZnO nanorods were hydrothermally synthesized on the surface of indium tin oxide glass using precipitate pre-treating method. The ZnO nanorods were uniformly and firmly grown on the indium tin oxide glass and possesed high photoelectrochemical oxygen evolution performance. Then electriocatalysis Nickel-borate were deposited onto the surface of ZnO with electro-assisted photodeposition method. The composite photoanodes were characterized by scanning electron microscopy (SEM), X-ray diffraction(XRD) and the UV-vis diffuse reflection spectroscopy, and the photoelectrochemical water oxidation properties of ZnO/Ni-Bi composite photoanodes were investigated by electrochemical and photoelectrochemical methods. The effect of deposition methods, deposition time and heat treatment progress to the photoelectrochemical oxygen evolution performance of the ZnO/Ni-Bi composited photoanodes were invesigated. The performance of ZnO is improved for as high as 40% after coupling with Ni-Bi. The high oxygen evolution activity of the composite photoanodes can be attributed to seperation and inhibit of hole-electron recombination by Ni-Bi through facilitating the transfer of photon-induced holes from ZnO for water oxidation.

参考文献

[1] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972, 238: 37-38.
[2] Xiao H J. Aircraft oxygen equipment physiological research review and outlook[J]. Acta Aeronautica et Astronautica Sinica,2001,22(5): 441-443. ( in Chinese) 肖华军. 航空供氧装备生理研究回顾与展望[J]. 航空学报,2001,22(5): 441-443.
[3] Jin T, Xu D, Diao P, et al. Preparation and photoelectrocatalytic water oxidation properties of FeO(OH)-TiO2/CoPi composite photoanodes[J]. Acta Physico-Chimica Sinica, 2012, 28(10): 2276-2284. (in Chinese) 金涛, 许頔, 刁鹏, 等. FeO(OH)-TiO2/CoPi复合光阳极的制备及其光电催化氧化水性能[J]. 物理化学学报,2012,28(10): 2276-2284.
[4] Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environmental science & technology, 2008, 42(13): 4902-4907.
[5] Cesar I, Kay A, Gonzalez Martinez J A, et al. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure directing effect of Si-doping[J]. Journal of the American Chemical Society, 2006, 128(14): 4582-4583.
[6] Jin T, Diao P, Wu Q, et al. WO3 nanoneedles/ α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2014, 148-149: 304-310.
[7] Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J]. The Journal of Physical Chemistry Letters, 2010, 1(17): 2607-2612.
[8] Guo M, Diao P, Cai S. Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions[J]. Journal of Solid State Chemistry, 2005, 178(6): 1864-1873.
[9] Zhang L, Cheng H, Zong R, et al. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2009, 113(6): 2368-2374.
[10] Hsu C H, Chen D H. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films[J]. Nanotechnology, 2010, 21(28): 285603.
[11] Mohan R, Krishnamoorthy K, Kim S J. Enhanced photocatalytic activity of Cu-doped ZnO nanorods[J]. Solid State Communications, 2012, 152(5): 375-380.
[12] Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis[J]. CrystEngComm, 2010, 12(11): 3929-3935.
[13] Gautam U K, Panchakarla L, Dierre B, et al. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets[J]. Advanced Functional Materials, 2009, 19(1): 131-140.
[14] Yu C, Yang K, Shu Q, et al. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance[J]. Chinese Journal of Catalysis, 2011, 32(3): 555-565.
[15] Tian J, Chen L, Yin Y, et al. Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange[J]. Surface and Coatings Technology, 2009, 204(1): 205-214.
[16] Zou C E, Rao Y F, Alyamani A, et al. Heterogeneous lollipop-like V2O5/ZnO array: a promising composite nanostructure for visible light photocatalysis[J]. Langmuir, 2010, 26(14): 11615-11620.
[17] Xiang X, Xie L, Li Z, et al. Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity[J]. Chemical Engineering Journal, 2013, 221(1): 222-229.
[18] Steinmiller E M P, Choi K S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20633-20636.
[19] Dincǎ M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J]. Proceedings of the National Academy of Sciences, 2010, 107(23): 10337-10341.
[20] Jin T, Diao P, Xu D, et al. High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation[J]. Electrochimica Acta, 2013, 114: 271-277
[21] Choi S K, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO 4 photo-electrodes[J]. Physical Chemistry Chemical Physics, 2013, 15(17): 6499-6507.
[22] Guo M, Diao P, Wang X, et al. The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films[J]. Journal of Solid State Chemistry, 2005, 178(10): 3210-3215.
[23] Wang H, Xie J, Duan M. ZnO crystals with special morphologies: preparation by hydrothermal method and photocatalytic properties[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(2): 321-326. ( in Chinese) 王虎, 谢娟, 段明. 特殊形貌的ZnO 晶体: 水热法生长及光催化性能[J]. 无机化学学报, 2011, 27(2): 321-326.
[24] Liu S J. Hydrothermal synthesis of six column like ZnO microcrystals, structure and photocatalytic properties[D]. Wuhan: Wuhan University of Technology, 2011. 刘淑洁. 水热法制备六方柱状ZnO微晶的形貌、结构与光催化性能[D]. 武汉: 武汉理工大学, 2011.
[25] Fu H, Xu T, Zhu S, et al. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environmental Science & Technology, 2008, 42(21): 8064-8069.
[26] Rudd A L, Breslin C B. Photo-induced dissolution of zinc in alkaline solutions[J]. Electrochimica Acta, 2000, 45(10): 1571-1579.
文章导航

/