论文

NiCo/Cu多层纳米线的制备、表征以及磁化反转机制研究

  • 杨皓哲 ,
  • 曾敏 ,
  • 刘晓芳 ,
  • 于荣海 ,
  • 钟华生 ,
  • 黎业生 ,
  • 陈一胜
展开
  • 1. 北京航空航天大学 材料科学与工程学院, 北京 100191;
    2. 江西理工大学 材料科学与工程学院, 江西 赣州 341000
杨皓哲 男,博士研究生。主要研究方向:低维纳米复合磁性材料。Tel:010-82313786 E-mail:yanghaozhe@mse.buaa.edu.cn ;曾敏 男,博士,博士后。主要研究方向:软磁材料,吸波材料。Tel:010-82313786 E-mail:min_zeng@buaa.edu.cn ;刘晓芳 女,博士,讲师。主要研究方向:纳米材料,光催化材料。Tel:010-82313786E-mail:liuxf05@buaa.edu.cn ;于荣海 男,博士,教授,博士生导师。主要研究方向:磁性材料、能源材料。Tel:010-82317101 E-mail:rhyu@buaa.edu.cn

收稿日期: 2014-05-12

  修回日期: 2014-07-09

  网络出版日期: 2014-07-11

基金资助

国家"973"计划(2010CB934602)

Investigation on Preparation, Characterization and Magnetic Reversal Mechanism of NiCo/Cu Multilayer Nanowire

  • YANG Haozhe ,
  • ZENG Min ,
  • LIU Xiaofang ,
  • YU Ronghai ,
  • ZHONG Huasheng ,
  • LI Yesheng ,
  • CHEN Yisheng
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Received date: 2014-05-12

  Revised date: 2014-07-09

  Online published: 2014-07-11

Supported by

National Basic Research Program of China (2010CB934602)

摘要

采用电化学沉积在多孔氧化铝模板中制备了NiCo/Cu多层结构纳米线,并使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了纳米线的形貌和微观结构。透射电子显微镜的结果表明,通过控制阶梯电位时间,制备的铁磁层厚度为100 nm,非铁磁层厚度为10 nm。结合选区电子衍射技术(SAED)与X射线衍射分析技术(XRD),确定多层纳米线的晶格结构是面心立方(FCC)。在分析多层纳米阵列的微观结构之后,使用振动样品磁强计(VSM)测量磁滞回线。结果表明,随着Co含量的增加,多层纳米线的矫顽力升高。当多层纳米线中Co含量为10%和30%时,易磁化轴垂直于纳米线,当Co含量为70%和90%时,易磁化轴平行于纳米线。最后,对纳米线磁化翻转机制进行微磁学模拟分析得出,当外加磁场垂直于纳米线时,磁化反转机制是形核机制;当外加磁场平行于纳米线时,磁化反转机制是卷曲机制。

本文引用格式

杨皓哲 , 曾敏 , 刘晓芳 , 于荣海 , 钟华生 , 黎业生 , 陈一胜 . NiCo/Cu多层纳米线的制备、表征以及磁化反转机制研究[J]. 航空学报, 2014 , 35(10) : 2819 -2825 . DOI: 10.7527/S1000-6893.2014.0145

Abstract

The NiCo/Cu multilayer nanowires have been fabricated by the porous anodic aluminum oxide assisted electrodeposition. Then, scanning electron microscope (SEM) and transmission electron microscope (TEM) are used to analyze the morphology and nanostructure of the multilayer nanowire. The thickness of the ferromagnetic layer and the non-ferromagnetic layer are controlled to be 100 nm and 10 nm, respectively, by adjusting the deposition time. The results of selected area electron diffraction (SAED) and X-ray diffraction (XRD) show that the crystal structure of the nanowire is face center cubic (FCC) phase. After the microstructure characterization of the multilayer, the hysteresis loops are measured by a vibrating sample magnetometer (VSM). The results indicate that the coercivity of the multilayer nanowire increases with increasing the content of Co. The easy axis of the multilayer stays perpendicular when the content of cobalt is 10% and 30%, while the easy axis tend to be parallel to the nanowire when increasing the ratio of Co to 70% and 90%. At last, the magnetic reversal mechanism is tentatively analyzed by micro-magnetic simulation. The reversal mode is nucleation controlled when the applied field is perpendicular to the nanowire. And when the applied magnetic field is parallel to the nanowire, the magnetic reversal would be controlled by curling.

参考文献

[1] Blondel A, Meier J P, Doudin B, et al.Giant magnetoresistance of nanowires of multilayers[J].Applied Physics Letters, 1994, 65(23):3019-3021.
[2] Doudin B, Redmond G, Gilbert S E, et al.Magnetoresistance governed by fluctuations in ultrasmall Ni/NiO/Co junctions[J].Physical Review Letters, 1997, 79(5):933-936.
[3] Li J L, Chen K H, Fan L Q, et al.Effects of special structure of Fe nanowire arrays on property of microwave absorption[J].Materials Science and Engineering of Powder Metallurgy, 2005, 10(4):231-235.(in Chinese) 李金儡, 陈康华, 范令强, 等.铁纳米线阵列组织结构对其吸波性能的影响[J].粉末冶金材料科学与工程, 2005, 10(4):231-235.
[4] Zhao X F, Wang S L, Yu M X, et al.Electromagnetic wave absorbents of nano-magnetic metals[J].Aerospace Materials & Technology, 2010, 40(6):16-20.(in Chinese) 赵秀芬, 王树伦, 于名讯, 等.纳米磁性金属电磁波吸收剂[J].宇航材料工艺, 2010, 40(6):16-20.
[5] Huang L P, Chen K H, Li J L, et al.Preparation and microwave absorption research of Fe nanowire arrays[J].Rare Metal Materials and Engineering, 2006, 35(3):480-483.(in Chinese) 黄兰萍, 陈康华, 李晶儡,等.Fe磁性纳米线阵列的制备与微波吸收性能研究[J].稀有金属材料与工程, 2006, 35(3):480-483.
[6] Ma L A, Lin Z X, Lin J Y, et al.Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties[J].Physica E:Low-Dimensional Systems & Nanostructures, 2009, 41(8):1500-1503.
[7] Nagashima K, Yanagida T, Tanaka H, et al.Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires[J].Journal of the American Chemical Society, 2008,130(15):5378-5382.
[8] Kim H W, Shim S H, Lee J W, et al.Study of SnO2 nanorods coated using the PECVD technique[J].Journal of the Korean Physical Society, 2007, 50(4):1085-1089.
[9] Qin D H, Wang C W, Sun Q Y, et al.The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays[J].Applied Physics A:Materials Science & Processing, 2002, 74(6):761-765.
[10] Pirota K R, Beron F, Zanchet D, et al.Magnetic and structural properties of fcc/hcp bicrystalline multilayer Co nanowire arrays prepared by controlled electroplating[J].Journal of Applied Physics, 2011, 109(8):083919.
[11] Kok K Y, Hangarter C M, Goldsmith B, et al.Synthesis and characterization of electrodeposited permalloy (Ni80Fe20 )/Cu multilayered nanowires[J].Journal of Magnetism and Magnetic Materials, 2010, 322(24):3876-3881.
[12] Huang Q, Davis D, Podlaha E J.Electrodeposition of FeCoNiCu nanowires[J].Journal of Applied Electrochemistry, 2006, 36(8):871-882.
[13] Chen K H, Fan L Q, Li J L, et al.Processing and microwave absorbing behavior of iron magnetic nanowire array based on aluminum plate[J].Journal of Functional Materials, 2006, 37(9):1386-1388.(in Chinese) 陈康华, 范令强, 李金儡, 等.铝基磁性铁纳米线阵列吸波材料的制备与吸波性能[J].功能材料, 2006, 37(9):1386-1388.
[14] Cho J U, Min J H, Ko S P, et al.Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires[J].Journal of Applied Physics, 2006, 99(8):08C909-08C909-3.
[15] Li Y, Moldovan M, Young D P, et al.Electrodeposited Co-Cu/Cu multilayered microposts[J].Journal of Magnetism and Magnetic Materials, 2008, 320(23):3282-3287.
[16] Ahmad N, Chen J Y, Shi D W, et al.Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires[J].Journal of Applied Physics, 2012, 111(7):07C119.
[17] Beron F, Carignan L, Menard D, et al.Magnetic behavior of Ni/Cu multilayer nanowire arrays studied by first-order reversal curve diagrams[J].IEEE Transactions on Magnetics, 2008, 44(11):2745-2748.
[18] Qi K, Li X, Zhang H, et al.Nanoscale characterization and magnetic property of NiCoCu/Cu multi-layer nanowires[J].Nanotechnology, 2012, 23(50):505707.
[19] Yao S W, Song Z X, Wang H Z.Fabrication and magnetic properties of Co/Cu multilayer nanowire arrays[J].Acta Physico-Chimica Sinica, 2007, 23(8):1306-1310.(in Chinese) 姚素薇, 宋振兴, 王宏智.Co/Cu多层纳米线阵列的制备与磁性能[J].物理化学学报, 2007, 23(8):1306-1310.
[20] Qi K, Ma C S, Li X H, et al.Nanostructure and chemical characterization of NiCu/Cu multilayer nanowires[J].Journal of Chinese Electron Microscopy Society, 2012, 31(2) :97-103.(in Chinese) 齐阔, 马传生, 李兴华, 等.NiCu/Cu多层纳米线微、纳结构及成份研究[J].电子显微学报, 2012, 31(2):97-103.
[21] Vivas L G, Vazquez M, Escrig J, et al.Magnetic anisotropy in CoNi nanowire arrays:Analytical calculations and experiments[J].Physical Review B, 2012, 85(3):035439.
[22] Tang X T, Wang G C, Shima M.Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires[J].Journal of Magnetism and Magnetic Materials, 2007, 309(2):188-196.
[23] Tang X T, Wang G C, Shima M.Layer thickness dependence of CPP giant magnetoresistance in individual CoNi/Cu multilayer nanowires grown by electrodeposition[J].Physical Review B, 2007, 75(13):134404.
[24] Elbaile L, Cubero I G, Crespo R D, et al.Magnetic behavior in arrays of Ni79Fe21and Ni79Fe21/Cu nanowires[J].Journal of Alloys and Compounds, 2012(536):S359-S364.
[25] Xu J, Xu Y.Fabrication and magnetic property of binary Co-Ni nanowire array by alternating current electrodeposition[J].Applied Surface Science, 2007, 253(17):7203-7206.
[26] Bromwich T J, Kasama T, Chong R K K, et al.Remanent magnetic states and interactions in nano-pillars[J].Nanotechnology, 2006, 17(17):4367-4373.
文章导航

/