材料工程与机械制造

运动油滴/固体壁面斜碰撞的状态辨识及特征分析

  • 刘登 ,
  • 陈国定 ,
  • 方龙 ,
  • 孙恒超
展开
  • 西北工业大学 机电学院, 西安 710072
刘登 女, 硕士研究生。主要研究方向: 航空发动机润滑系统设计。E-mail: dengliu@mail.nwpu.edu.cn;陈国定 男, 博士, 教授, 博士生导师。主要研究方向: 润滑与密封,机电系统热分析和现代机械设计理论与方法。Tel: 029-88493929 E-mail: gdchen@nwpu.edu.cn;方龙 男, 博士研究生。主要研究方向: 航空发动机轴承腔油气两相流动分析。E-mail: fralong@126.com;孙恒超 男, 博士研究生。主要研究方向: 航空发动机润滑系统设计与研究。E-mail: shc361@163.com

收稿日期: 2014-06-04

  修回日期: 2014-06-23

  网络出版日期: 2014-07-09

State identification and characteristics analysis of oil droplet's oblique impact onto solid wall

  • LIU Deng ,
  • CHEN Guoding ,
  • FANG Long ,
  • SUN Hengchao
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-06-04

  Revised date: 2014-06-23

  Online published: 2014-07-09

摘要

航空发动机轴承腔油气两相流动与换热研究是轴承腔润滑与换热设计的重要基础工作,而运动油滴与轴承腔壁面的碰撞状态辨识及特征分析是轴承腔油气两相流动与换热研究的组成部分。基于VOF方法建立了运动油滴与固体壁面斜碰撞数值仿真模型,实现了运动油滴与固体壁面斜碰撞状态的数值模拟,分析了碰撞油滴直径、入射角和碰撞速度对沉积油膜铺展长度、油膜堆积厚度和溅射油滴数目等碰撞状态特征参数的影响规律,提出了运动油滴与固体壁面斜碰撞条件下的状态判断准则,并得到了文献的物理试验工作的支持。研究结果表明:随着油滴入射角减小,沉积油膜铺展长度和油膜堆积厚度增大,溅射油滴数目减少;随着碰撞速度和油滴直径的增大,沉积油膜铺展长度和溅射油滴数目均增大,但油膜堆积厚度对应前者呈减小趋势、对应后者仍呈增大趋势。

本文引用格式

刘登 , 陈国定 , 方龙 , 孙恒超 . 运动油滴/固体壁面斜碰撞的状态辨识及特征分析[J]. 航空学报, 2015 , 36(4) : 1359 -1366 . DOI: 10.7527/S1000-6893.2014.0134

Abstract

Analysis of oil/air two-phase flow and heat transfer in bearing chamber are important fundamental work for the lubrication and heat transfer design of aeroengine bearing chamber, while state identification and characteristics analysis of oil droplet's oblique impact onto solid wall are the main parts for oil/air two-phase flow and heat transfer study. In this paper, the numerical model of oil droplet's oblique impact onto solid wall is established with volume of fluid (VOF) method and the numerical simulation of oil droplet impingement state is carried out, and then the effects of oil droplet diameter, incident angle, impact velocity on the deposited oil film spreading length, oil film thickness and splashing droplets number are discussed particularly, the criterion used for classify impingement state of oil droplet oblique impingement is proposed, and its rationality is verified by physical testing work of others. The results show that as the incident angle decreases, the deposited oil film spreading length and oil film thickness increase, whereas the number of splashing droplets reduces; as the impact velocity and oil droplet diameter increase, the deposited oil film spreading length and the splashing droplets number increase, but the oil film thickness decreasing trend corresponds to the former and the increasing trend corresponds to the latter.

参考文献

[1] Mundo C, Sommerfeld M, Tropea C. Droplet wall collisions: experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 2l(2): 151-173.
[2] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces[J].Atomization and Sprays, 2001, 11(2): 155-165.
[3] Rioboo R, Marengo M, Tropea C. Time evaluation of liquid drop impact onto solid dry surfaces[J]. Experimental Fluids, 2002, 33(2): 112-121.
[4] Sikalo S, Tropea C, Ganic E N. Impact of droplets onto inclined surfaces[J]. Journal of Colloid and Interface Science, 2005, 286(4): 661-669.
[5] Sikalo S, Ganic E N. Phenomena of droplet-surface interactions[J]. Experimental Thermal and Fluid Science, 2006, 31(1): 97-110.
[6] Hitoshi F, Yu S. Three-dimensional numerical analysis of the deformation state of droplets impinging onto a solid substrate[J]. International Journal of Multiphase Flow, 2007, 33(3): 317-332.
[7] Shen S Q, Cui Y Y, Guo Y L. Numerical simulation of droplet striking on inclined isothermal surface[J]. Journal of Thermal Science and Technology, 2009, 8(3): 194-197 (in Chinese). 沈胜强, 崔艳艳, 郭亚丽. 液滴撞击等温斜面的数值模拟[J]. 热科学与技术, 2009, 8(3): 194-197.
[8] Cui Y Y. Research on dynamical process of droplet impacting on inclined surface[D]. Dalian: Dalian University of Technology, 2010 (in Chinese). 崔艳艳. 液滴撞击倾斜壁面动力学过程研究[D]. 大连: 大连理工大学, 2010.
[9] Lu J J, Chen X L, Cao X K, et al. Characteristic phenomenon and analysis of a single liquid droplet impacting on dry surfaces[J]. Chemical Reaction Engineering and Technology, 2007, 23(6): 505-510 (in Chinese). 陆军军, 陈雪莉, 曹显奎, 等. 液滴撞击平板的铺展特征[J]. 化学反应工程与工艺, 2007, 23(6): 505-510.
[10] Song Y C. Fundamental study on the interface tracking method of gas-liquid two-phase flows and droplet impacting onto the surface[D]. Beijing: Beijing Jiaotong University, 2012 (in Chinese). 宋云超. 气液两相流动相界面追踪方法及液滴撞击壁面运动机制的研究[D]. 北京: 北京交通大学, 2012.
[11] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(2): 201-225.
[12] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface-tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[13] Lunkad S F, Buwa V V, Nigam K. Numerical simulations of drop impact and spreading on horizontal and inclined surfaces[J]. Chemical Engineering Science, 2007, 62(4): 7214-7224.
[14] Scheller B L, Bousfield D W. Newtonian drop impact with solid surface[J]. American Institute of Chemical Engineers, 1995, 41(3): 1357-1362.
[15] Zhang X G, Basaran O A. Dynamic surface tension effect in impact of a drop with a solid surface[J]. Colloid Interface Science, 1997, 187(2): 166-175.
[16] Wang J, Chen G D, Liu Y J. Analysis of the oil droplet motion and deposition characteristics in an aero-engine bearing chamber[J]. Tribology, 2010, 30(4): 362-366 (in Chinese). 王军, 陈国定, 刘亚军. 航空发动机轴承腔中油滴运动与沉积的特性分析[J]. 摩擦学学报, 2010, 30(4): 362-366.
[17] Chen B, Chen G D, Wang T. Flow characteristics analysis of wall oil film with consideration of oil droplet deformation and secondary oil droplet deposition in aeroengine bearing chamber[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1980-1989 (in Chinese). 陈薄, 陈国定, 王涛. 考虑油滴变形和二次油滴效应的轴承腔壁面油膜流动分析[J].航空学报, 2013, 34(8): 1980-1989.
[18] Pan K L, Tseng K C, Wang C H . Breakup of a droplet at high velocity impacting a solid surface[J]. Experiment Fluids, 2010, 48(2): 143-156.

文章导航

/