综述

吸气式高超声速飞行器制导与控制研究现状及发展趋势

  • 方洋旺 ,
  • 柴栋 ,
  • 毛东辉 ,
  • 张磊
展开
  • 空军工程大学 航空航天工程学院, 陕西 西安 710038
方洋旺男,博士,教授,博士生导师。主要研究方向:导航制导与控制、非线性控制、随机最优控制和智能信息处理。Tel:029-84787589E-mail:ywfang2008@sohu.com;柴栋男,博士研究生。主要研究方向:高超声速飞行器气动力与控制。Tel:029-84787589E-mail:chaibaodong@126.com

收稿日期: 2014-01-01

  修回日期: 2014-03-13

  网络出版日期: 2014-07-04

基金资助

国家自然科学基金(60874040)

Status and Development Trend of the Guidance and Control for Air-breathing Hypersonic Vehicle

  • FANG Yangwang ,
  • CHAI Dong ,
  • MAO Donghui ,
  • ZHANG Lei
Expand
  • School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China

Received date: 2014-01-01

  Revised date: 2014-03-13

  Online published: 2014-07-04

Supported by

National Natural Science Foundation of China (60874040)

摘要

制导与控制技术是发展高超声速飞行器的关键技术,同时也是控制学科研究的热点问题,许多先进控制理论在此领域得到应用。鉴于此,分析了吸气式高超声速飞行器动力学模型非线性、强耦合和不确定性等特点,指出高超声速飞行器制导与控制技术面临的挑战。在综述国内外研究成果的基础上,对吸气式高超声速飞行器制导与控制中基于线性化的非线性控制方法和直接针对非线性模型的控制方法分类讨论,分析了尚待解决的问题和不足。最后,结合吸气式高超声速飞行器鲁棒性、自适应性和智能化的目标,从面向机动目标制导律、高速目标拦截器制导律、全空域机动飞行控制和先进智能控制理论等方面展望了此领域研究的发展趋势。

本文引用格式

方洋旺 , 柴栋 , 毛东辉 , 张磊 . 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014 , 35(7) : 1776 -1786 . DOI: 10.7527/S1000-6893.2014.0021

Abstract

Guidance and control technique is one of the key technologies of hypersonic vehicles and it is also a focus in control discipline, in which many advanced control theories have been applied. In this paper, we analyze the nonlinearity, strong couplings, uncertainties and other characteristics of the air-breathing hypersonic vehicle's dynamic model and point out the challenges of guidance and control technique for hypersonic vehicle. Then, based on combining domestic and foreign research results, the theories and approaches for this issue are discussed particularly by classification, including nonlinear control based on linearization and nonlinear control directly against nonlinear model. In addition, the unsolved problems and deficiencies in this field are analyzed by reviewing the existing literature. Finally, combined with the goal of robustness, adaptability and intellectuality for the air-breathing hypersonic vehicle, the development trend is suggested in the following four aspects: guidance law for tracking maneuvering target, guidance law of interceptor against hypersonic target, maneuvering control in all-aerospace and advanced intelligent control theories.

参考文献

[1] Huang L, Duan Z S, Yang J Y. Challenges of control science in near space hypersonic aircrafts[J]. Control Theory & Applications, 2011, 28(10): 1496-1505. (in Chinese) 黄琳, 段志生, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1505.

[2] Wu H X, Meng B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6): 756-765. (in Chinese) 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6): 756-765.

[3] Wang S, Guan P, Liu X H. Nonlinear predictive control for hypersonic aircraft[J]. Journal of Beijing Information Science and Technology University, 2013, 28(1): 13-17. (in Chinese) 汪赛, 管萍, 刘小河. 高超声速飞行器的非线性预测控制[J]. 北京信息科技大学学报, 2013, 28(1): 13-17.

[4] Li J, Zuo B, Duan M Y, et al. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 220-233. (in Chinese) 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2): 220-233.

[5] Song C, Zhao G R, Gai J F. Sliding mode backstepping control for hypersonic aircraft based on nonlinear disturbance observer[J]. Systems Engineering and Electronics, 2012, 34(6): 1231-1234. (in Chinese) 宋超, 赵国荣, 盖俊峰. 基于非线性干扰观测器的高超声速飞行器反演滑模控制[J]. 系统工程与电子技术, 2012, 34(6): 1231-1234.

[6] Xu B, Shi Z K, Yang C G, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint[J]. Nonlinear Dynamics, 2013, 73(3): 1849-1861.

[7] Hu X, Wu L, Hu C, et al. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle[J]. Control Theory & Applications, 2012, 6(9): 1238-1249.

[8] Zhang T Y, Zhou J, Guo J G. Design of predictive controller for hypersonic vehicles based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 215-222. (in Chinese) 张天翼, 周军, 郭建国. 基于干扰观测器的高超声速飞行器预测控制器设计[J]. 航空学报, 2014, 35(1): 215-222.

[9] Sun C Y, Mu C X, Yu Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinca, 2013, 39(11): 1901-1913. (in Chinese) 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913.

[10] Dalle D J, Frendreis S V, Driscoll J F. Hypersonic vehicle flight dynamics with coupled aerodynamics and reduced-order propulsive models, AIAA-2010-7930. Reston: AIAA, 2010.

[11] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11. (in Chinese) 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.

[12] Wilcox Z D, Mackunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects[J]. Journal of Guidance, Control and Dynamics, 2010, 33(4): 1213-1224.

[13] McNamara J J, Crowell A R, Friedmann P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945.

[14] Li H F, Lin P, Xu D J. Control-oriented modeling for air-breathing hypersonic vehicle using parameterized configuration approach[J]. Chinese Journal of Aeronautics, 2011, 24(1): 81-89.

[15] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808. (in Chinese) 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.

[16] Wang J B, Ren Z. A new piecewise predictive guidance for the long-range reentry vehicles//Proceedings of the 2011 International Conference on Electrical and Control Engineering. Yichang: ICECE, 2011: 521-525.

[17] Hu S G, Fang Y W, Zhang P, et al. Design and simulation of guidance law for a kind of near-space hypersonic vehicle[J]. Journal of Ballistics, 2011, 23(3): 7-12. (in Chinese) 胡诗国, 方洋旺, 张平, 等. 一种近空间高超声速飞行器的制导律设计与仿真[J]. 弹道学报, 2011, 23(3): 7-12.

[18] Hu S G, Fang Y W, Gao X. A new optimal guidance law for near space hypersonic vehicle based on Markov jump linear system//Proceedings of the 2011 Chinese Control and Decision Conference. Mianyang: CCDC, 2011: 478-482.

[19] Sang B H, Jiang C S. Virtual target differential game midcourse guidance law for hypersonic cruise missile based on neural network[J]. Transactions of Nanjing University of Aeronautics & Astronautic, 2008, 25(2): 121-126.

[20] Wang Y Z, Shi X P, Zhu Y. A novel switching guidance law against hypersonic random maneuvering target//Proceedings of the 2010 Chinese Control and Decision Conference. Mianyang: CCDC, 2010: 2179-2183.

[21] Meng Z J, Chen K, Huang P F, et al. Design of accurate guidance for hypersonic vehicle[J]. Flight Dynamics, 2009, 27(2): 38-41. (in Chinese) 孟中杰, 陈凯, 黄攀峰, 等. 高超声速战术导弹精确制导律设计[J]. 飞行力学, 2009, 27(2): 38-41.

[22] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamic, 2007, 30(3): 856-859.

[23] Hu X X, Wu L G, Hu C H, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2012, 349(2): 559-577.

[24] Shi J M, Wang J, Wang K, et al. Design of backstepping controller for longitudinal motion of an air-breathing hypersonic vehicle[J]. Journal of Xi'an Jiaotong University, 2013, 47(3): 102-107. (in Chinese) 时建明, 王洁, 王琨, 等. 吸气式高超声速飞行器纵向运动反演控制器设计[J]. 西安交通大学学报, 2013, 47(3): 102-107.

[25] Davidson J, Lallman F, McMinn J D, et al. Flight control laws for NASA's hyper-X research vehicle, AIAA-1999-4124. Reston: AIAA, 1999.

[26] Huang X L, Ge D M. Robust gain-scheduling control of hypersonic vehicle subject to input constraints[J]. Systems Engineering and Electronic, 2011, 33(8): 1829-1936. (in Chinese) 黄显林, 葛东明. 输入受限高超声速飞行器鲁棒变增益控制[J]. 系统工程与电子技术, 2011, 33(8): 1829-1936.

[27] Huang X L, Ge D M. Robust linear parameter-varying control for longitudinal maneuvering flight of air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(7): 1789-1797. (in Chinese) 黄显林, 葛东明. 吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制[J]. 宇航学报, 2010, 31(7): 1789-1797.

[28] Hu S G, Fang Y W, Xiao B S, et al. Near space hypersonic vehicle longitudinal motion control based on Markov jump system theory//Proceedings of the 8th World Congress on Intelligent Control and Automation, 2010: 7067-7072.

[29] Hu Z B, Mo B, Zhou D Z, et al. Robust nonlinear control of a hypersonic aircraft based on sliding mode control[J]. Procedia Engineering, 2012, 29(1): 839-842.

[30] Gao G, Wang J Z. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties[J]. Journal of the Franklin Institute, 2013, 350(5): 1155-1188.

[31] Li H F, Sun W C. Exponential approach law based sliding control for a hypersonic vehicle[J]. Aerospace Control and Application, 2009, 35(4): 39-43.

[32] Wan J, Wang Q, Ai J L. Dynamic inversion-based control system of a hypersonic vehicle with model uncertainty, AIAA-2012-5965. Reston: AIAA, 2012.

[33] Di X G, Kong Q X, Yu Y. Attitude control for hypersonic vehicle with compound actuator based on adaptive dynamic inversion[J]. Journal of Astronautics, 2013, 34(7): 955-962. (in Chinese) 遆晓光, 孔庆霞, 余颖. 基于自适应动态逆的高超声速飞行器姿态复合控制[J]. 宇航学报, 2013, 34(7): 955-962.

[34] Zong Q, Lv L, Tian B L, et al. Nonlinear control for near space vehicle via backstepping method[J]. Control Engineering of China, 2012, 19(5): 860-863. (in Chinese) 宗群, 吕力, 田柏苓, 等. 基于Backstepping的临近空间飞行器非线性控制[J]. 控制工程, 2012, 19(5): 860-863.

[35] Fiorentini L, Serrani A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control and Dynamics, 2009, 32(2): 401-416.

[36] Xu B, Pan Y P, Wang D W, et al. Discrete-time hypersonic flight control based on extreme learning machine[J]. Neurocomputing, 2014, 128(3): 232-241.

[37] Gao D X, Sun Z Q, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method[J]. Control Theory & Applications, 2008, 25(5): 805-809. (in Chinese) 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5): 805-809.

[38] Zhang J, Zhao D A, Wang M. A robust decoupling control law for hypersonic vehicle[J]. Journal of Astronautics, 2011, 32(5): 1100-1107. (in Chinese) 张军, 赵德安, 王玫. 一种高超声速飞行器的鲁棒解耦控制方法[J]. 宇航学报, 2011, 32(5): 1100-1107.

[39] Zhang Z H, Yang L Y, Shen G Z. Switching LPV control method in wide flight envelope for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1706-1716. (in Chinese) 张增辉, 杨凌宇, 申功璋. 高超声速飞行器大包线切换LPV控制方法[J]. 航空学报, 2012, 33(9): 1706-1716.

[40] Wang Y F, Jiang C S, Wu Q X. Multi-model soft-switching cost-guaranteed non-fragile control for near-space vehicle[J]. Control Theory & Applications, 2012, 29(4): 440-446. (in Chinese) 王宇飞, 姜长生, 吴庆宪. 近空间飞行器多模型软切换保性能非脆弱控制[J]. 控制理论与应用, 2012, 29(4): 440-446.

[41] Wang Q, Li X G. Adaptive inverse control of a generic hypersonic vehicle based on improved EMRAN[J]. Advanced in Control Engineering and Information Science, 2011, 15(12): 277-281.

[42] Qin C M, Qi N M, Zhu K. Active disturbance rejection attitude control design for hypersonic vehicle[J]. Systems Engineering and Electronics, 2011, 33(7): 1607-1610. (in Chinese) 秦昌茂, 齐乃明, 朱凯. 高超声速飞行器自抗扰姿态控制器设计[J]. 系统工程与电子技术, 2011, 33(7): 1607-1610.

文章导航

/