射流伺服阀用放大型超磁致伸缩执行器建模及分析
收稿日期: 2014-05-04
修回日期: 2014-06-10
网络出版日期: 2014-06-25
基金资助
国家自然科学基金(51175243,5080508);航空科学基金(20110752006, 20130652011);江苏省自然科学基金(BK20131359)
Modeling and Analysis for Amplified Giant Magnetostrictive Actuator Applied to Jet-pipe Electro-hydraulic Servovalve
Received date: 2014-05-04
Revised date: 2014-06-10
Online published: 2014-06-25
Supported by
National Natural Science Foundation of China (51175243, 5080508); Aeronautical Science Foundation of China (20110752006, 20130652011); Natural Science Foundation of Jiangsu Province (BK20131359)
为提高射流伺服阀的动态性能,设计了采用桥式微位移放大机构的射流伺服阀用放大型超磁致伸缩执行器(AGMA).建立了计输入位移损失的放大机构模型以及非线性位移输出理论模型,并采用有限元法对所建放大机构模型进行了对比验证,结果表明:放大机构的输入刚度模型最大误差<0.78 N/μm,放大倍数模型最大误差<0.22,放大倍数受输入位移影响较小.最后,试验研究了AGMA的静动态特性,结果显示:控制电流在-0.5 A到0.5 A缓慢变化时,AGMA输出位移约为78 μm;当控制电流从-0.5 A跃变到0.5 A时,其峰值位移约为71 μm,峰值时间约为0.014 s,调节时间小于0.1 s;当控制电流幅值为0.5 A时,其输出位移幅频宽>40 Hz,谐振频率约为30 Hz.
朱玉川 , 李跃松 . 射流伺服阀用放大型超磁致伸缩执行器建模及分析[J]. 航空学报, 2014 , 35(11) : 3156 -3165 . DOI: 10.7527/S1000-6893.2014.0121
In order to improve the dynamic performance of a jet-pipe electro-hydraulic servovalve, a novel bridge-type micro-displacement amplified giant magnetostrictive actuator (AGMA) for a jet-pipe electro-hydraulic servovalve is presented. The models considering the input displacement loss are deduced to describe the input stiffness and amplification ratio of the amplified mechanism. Then, the nonlinear dynamic model of AGMA is obtained. The above-mentioned models of the input stiffness and amplification ratio are verified by finite element analysis. The results show that the maximum error of input stiffness is less than 0.78 N/μm, the maximum error of amplification ratio is less than 0.22, and the effect of input displacement on amplification ratio is small. Finally, the experiment results show that the output displacement of AGMA is 78 μm at the control current slowly changing between -0.5 A and 0.5 A. However, when the control current steps from -0.5 A to 0.5 A, the peak displacement of AGMA is 71 μm with the peak time about 0.014 s and the settling time less than 0.1 s. The bandwidth is more than 40 Hz and resonant frequency is about 30 Hz at the control current's amplitude of 0.5 A.
[1] Karunanidhi S, Singaperumal M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servovalve[J]. Sensors and Actuators A: Physical, 2010, 157(2): 185-197.
[2] Chaudhuri A, Yoo J H, Wereley N M. Design, test and model of a hybrid magnetostrictive hydraulic actuator[J]. Smart Materials and Structures, 2009, 18(8): 5000-5019.
[3] Li R P, Nie S L, Yi M L, et al. Simulation investigation on fluid characteristics of jet pipe water hydraulic servovalve base on CFD[J]. Journal of Shanghai University: English Edition, 2011, 15(3): 201-206.
[4] Zhu Y C, Li Y S. A novel jet pipe servo valve driven by giant magnetostrictive actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(4): 574-577.(in Chinese) 朱玉川, 李跃松.超磁致伸缩执行器驱动的新型射流伺服阀[J].压电与声光, 2010, 32(4): 574-577.
[5] Li Y S, Zhu Y C, Wu H T, et al. Parameter optimization of jet-pipe servovalve driven by giant magnetostrictive actuator[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1336-1344. (in Chinese) 李跃松, 朱玉川, 吴洪涛, 等.超磁致伸缩执行器驱动的射流伺服阀参数优化[J].航空学报, 2011, 32(7): 1336-1344.
[6] Wang C L, Ding F, Zhang Y S, et al. Application research on giant magnetostrictive in servovalve and micro pipe robot[J]. Chinese Journal of Mechanical Engineering, 2005, 18 (1): 10-13.
[7] Wang X H, Li W, Ruan Z Y, et al. Research on properties of water hydraulic servovalve driven by diphase oppositing giant magnetostrictive actuator[C]//2010 International Conference on Measuring Technology and Mechatronics Automation, 2010: 143-146.
[8] Shen C L. Basic theory and experimental study of piezoelectric direct drive electro-hydraulic servovalves[D]. Jilin: Jilin University, 2006. (in Chinese) 沈传亮. 压电型直动式电液伺服阀的基本理论与实验研究[D]. 吉林: 吉林大学, 2006.
[9] Sente P A, Labrique F M, Alexandre P J. A efficient control of a piezoelectric linear actuator embedded into a servovalve for aeronautic applications[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1971-1979.
[10] Feenstra J, Granstrom J, Sodanp H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack[J]. Mechanical Systems and Signal Processing, 2008, 22(10): 721-734.
[11] Nicolae L, Ephrahim G. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J]. Computers and Structures, 2003, 81(7): 2797-2810.
[12] Ma H W, Yao S M, Wang L Q, et al. Analysis of the displacement amplification ratio of bridge-type flexure hinge[J]. Sensors and Actuators A:Physical, 2006, 132(2):730-736.
[13] Xu Q S, Li Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2011, 46(10): 183-200.
[14] Kaltenbacher M, Meiler M, Ertl M. Physical modeling and numerical computation of magnetostriction[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009, 28(4): 819-832.
[15] Leite J V, Sadowski N. Inverse Jiles-Atherton vector hysteresis model[J]. IEEE Transactions on Magnetics, 2004, 40(4): 1769-1775.
[16] Dapino M J, Smith R C, Flatau A B. Structural magnetic strain model for magnetostrictive transducers[J]. IEEE Transactions on Magnetics, 2000, 36(3): 545-556.
/
〈 | 〉 |