面向跟踪的吸气式高超声速飞行器动力学建模
收稿日期: 2013-09-03
修回日期: 2013-11-04
网络出版日期: 2014-06-20
基金资助
航空科学基金(20130196004)
Tracking Oriented Dynamics Modeling of Airbreathing Hypersonic Vehicles
Received date: 2013-09-03
Revised date: 2013-11-04
Online published: 2014-06-20
Supported by
Aeronautical Science Foundation of China(20130196004)
根据吸气式高超声速目标的动力学特性,对传统动压加速度模型的局限性做了分析。在重力转弯模型框架中,基于超燃冲压发动机的推力产生机理以及高超声速流场的斜激波方程和普朗特梅叶方程,提出了描述目标切向加速度的推广模型和目标法向加速度的斜激波、非解析混合模型。随后,基于高超声速流场工程近似算法对吸气式高超声速目标的模式特征进行分析,并设计了均匀模型集。对攻角、滚转角以及发动机状态发生突变的高超声速机动目标跟踪问题进行了仿真研究。结果表明,新的模型集能够较好地适应目标突然加速和转弯机动,有效跟踪助推跳跃机动的吸气式高超声速目标。
李海宁 , 雷虎民 , 翟岱亮 , 邵雷 , 李炯 . 面向跟踪的吸气式高超声速飞行器动力学建模[J]. 航空学报, 2014 , 35(6) : 1651 -1664 . DOI: 10.7527/S1000-6893.2013.0457
The disadvantages of traditional acceleration model based on dynamic pressure are analyzed according to dynamic characteristics of airbreathing hypersonic targets. In the framework of gravity turn modeling structure, a generalized model for tangent acceleration along with a mixed model consisting of oblique shock and a non-analytical models for normal acceleration is proposed according to thrust generating mechanism of scramjet engine as well as the oblique shock equation and Prandtl-Meyer equation of hypersonic flow field. Then, the mode space corresponding to these new models is analyzed with approximate calculation methods for hypersonic flow and a uniformly distributed model set is designed. A tracking scenario of hypersonic target maneuvering with instant change of angle of attack, roll angle and engine state is simulated. Simulation results demonstrate the efficiency of the new model set for tracking hypersonic targets with instant acceleration and turn.
[1] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part I: dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.
[2] Guan X, Zhao J, He Y. Track technology of hypersonic aircraft in near space[J]. Journal of Sichuan Ordnance, 2011, 32(8): 4-6.(in Chinese) 关欣, 赵静, 何友. 临近空间高超声速飞行器跟踪技术[J]. 四川兵工学报, 2011, 32(8): 4-6.
[3] Guan X, Zhao J, Zhang Z C, et al. A feasible tracking algorithm for hypersonic aircrafts[J]. Telecommunication Engineering, 2011, 51(8): 80-84.(in Chinese) 关欣, 赵静, 张政超, 等. 一种可行的高超声速飞行器跟踪算法[J]. 电讯技术, 2011, 51(8): 80-84.
[4] Li C X, Bi H K, Wang H, et al. A target tracking algorithm for hypersonic aircraft in near space[J]. Aerospace Electronic Warfare, 2012, 28(4): 10-13.(in Chinese) 李昌玺, 毕红葵, 王红, 等. 一种临近空间高超声速目标跟踪算法[J]. 航天电子对抗, 2012, 28(4): 10-13.
[5] Dong L X, Tan X S, Wu Z Y, et al. New algorithm for hypersonic target tracking[J]. Journal of Air Force Radar Academy, 2012, 26(2): 111-113.(in Chinese) 董来欣, 谭贤四, 武子彦, 等. 一种新的高超声速目标跟踪算法[J]. 空军雷达学院学报, 2012, 26(2): 111-113.
[6] Wu N, Chen L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1960-1971.(in Chinese) 吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8): 1960-1971.
[7] Jilkov V P, Li X R, Ru J F. Modeling ballistic target motion during boost for tracking//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2007, 6699: 669909-1-12.
[8] Li X R, Jilkov V P. A survey of maneuvering target tracking—Part Ⅱ: ballistic target models//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, 2001, 4473: 559-581.
[9] Liang Y Q, Han C Z, Sun Y J, et al. Modeling and multi-model estimation of invariable-structure semi-ballistic reentry vehicle[J]. Acta Automatica Sinica, 2011, 37(6): 700-712.(in Chinese) 梁勇奇, 韩崇昭, 孙耀杰, 等. 不变结构半弹道式再入飞行器的建模与多模型方法估计[J]. 自动化学报, 2011, 37(6): 700-712.
[10] Liang Y Q, Li X R, Han C Z, et al. A general systematic method for model-set design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1505-1520.
[11] Moose R L, Vanlandingham H F, McCabe D H. Modeling and estimation for tracking maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(3): 448-456.
[12] Gholson N H, Moose R L. Maneuvering target tracking using adaptive state estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(3): 310-317.
[13] Li X R, Jilkov V P. Survey of maneuvering target tracking. part V: multiple-model method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321.
[14] Tang S, Zhu Q J. Research progresses on flight dynamics modeling of air breathing hypersonic flight vehicles[J]. Advances in Mechanics, 2011, 41(2): 188-200.(in Chinese) 唐硕, 祝强军. 吸气式高超声速飞行器动力学建模研究进展[J]. 力学进展, 2011, 41(2): 188-200.
[15] Speyer J L, Dannemiller D, Walker D. Periodic optimal cruise of an atmospheric vehicle[J]. Journal of Guidance, 1985, 8(1): 31-38.
[16] Speyer J L. Periodic optimal flight[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(4): 745-753.
[17] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
[18] Bolender M A. An overview on dynamics and controls modeling of hypersonic vehicle//American Control Conference, 2009: 2507-2512.
[19] Xie Y, Liu L H, Tang G J, et al. Weaving maneuver trajectory design for hypersonic glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2174-2181.(in Chinese) 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计[J]. 航空学报, 2011, 32(12): 2174-2181.
[20] Siouris G M. Missile guidance and control systems[M]. New York: Springer-Verlag, 2004: 605-609.
[21] Simon J, Jeffrey K U. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
/
〈 | 〉 |