材料工程与机械制造

碳纤维增强环氧Z-pin拔脱性能

  • 褚奇奕 ,
  • 肖军 ,
  • 李勇 ,
  • 张向阳 ,
  • 王敏
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016
褚奇奕 男, 博士研究生。主要研究方向: 复合材料三维增强技术。Tel: 025-84892980 E-mail: chuqiyi@nuaa.edu.cn;肖军 男, 硕士, 教授, 博士生导师。主要研究方向: 先进复合材料制造技术。Tel: 025-84892980 E-mail: j.xiao@nuaa.edu.cn

收稿日期: 2014-04-18

  修回日期: 2014-06-09

  网络出版日期: 2014-06-19

基金资助

军品配套项目 (JPPT1146)

Pullout performance of carbon fiber/epoxy Z-pins

  • CHU Qiyi ,
  • XIAO Jun ,
  • LI Yong ,
  • ZHANG Xiangyang ,
  • WANG Min
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-04-18

  Revised date: 2014-06-09

  Online published: 2014-06-19

Supported by

Military Production Item (JPPT1146)

摘要

为了研究Z-pin层间增强的影响因素,采用Z-pin-浇注体拔脱实验分析了Z-pin埋入深度、直径和固化度对其拔脱性能的影响。采用Z-pin-浇注体与层合板的对比拔脱实验验证了Z-pin-浇注体拔脱实验表征Z-pin与被增强体的结合状态的可行性。Z-pin-浇注体拔脱实验结果表明,Z-pin的最大拔脱力随着埋入深度的增加而非线性增加;直径对拔脱力的影响主要体现在总接触面积的改变,最大拔脱力与Z-pin直径呈线性关系,其中直径0.7 mm Z-pin的最大拔脱力是直径0.3 mm Z-pin的2.35倍;控制Z-pin固化度,利用其与基体的共固化效应可以大幅地提高界面剪切强度,失效模式从界面脱粘转变成界面脱粘和基体树脂的内聚破坏的混合模式,最大拔脱力最高可以提高17倍。

本文引用格式

褚奇奕 , 肖军 , 李勇 , 张向阳 , 王敏 . 碳纤维增强环氧Z-pin拔脱性能[J]. 航空学报, 2015 , 36(4) : 1312 -1319 . DOI: 10.7527/S1000-6893.2014.0117

Abstract

In order to study the influencing factors of Z-pin's interlaminar reinforcement, the Z-pin pullout experiment from poured body is used to analyze the influence of the Z-pin's embedded length, diameter and curing degree on the pullout performance. And the behavior of Z-pin being pulled out from laminates is compared to that from poured body to verify the feasibility of Z-pin pullout experiment characterizing the bonding condition. The results reveal that the maximum pullout force increased with the embedded length; the increase of Z-pin diameter contributed a linear rise to the maximum pullout force by enlarging the total contact area. The maximum pullout force of Ø0.7 mm Z-pin has jumped to 2.35 times that of Ø0.3 mm Z-pin. Furthermore, Z-pin's co-curing with the matrix resin could improve the interfacial shear strength, and the failure mechanism is changed from interfacial debonding to a combination of cohesive failure of matrix resin and the interfacial debonding. The consequent elevation of maximum pullout force could be up to 17 times.

参考文献

[1] Mouritz A P. Review of z-pinned composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2383-2397.
[2] Mouritz A P, Bannister M K, Falzon P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1445-1461.
[3] Tomashevskii V T, Shalygin V N, Romanov D A, et al. Transversal reinforcement of composite materials using ultrasonic vibrations[J]. Mechanics of Composite Materials, 1988, 23(6): 769-772.
[4] Sun X N, Zheng C L. Advances on modeling through-the-thickness reinforcement of laminated composite by z-pinning[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1194-1202 (in Chinese). 孙先念, 郑长良. 层合复合材料z-pinning增强技术的力学进展[J]. 航空学报, 2006, 27(6): 1194-1202.
[5] Freitas G, Magee C, Dardzinski P, et al. Fiber insertion process for improved damage tolerance in aircraft laminates[J]. Journal of Advanced Materials, 1994, 25(4): 36-43.
[6] Zheng X T, Li Z J, Yang F. Experimental investigation on the fracture toughness of Z-pins reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 180-188 (in Chinese). 郑锡涛, 李泽江, 杨帆. Z-pin增强复合材料层合板断裂韧性试验研究[J]. 复合材料学报, 2010, 27(4): 180-188.
[7] Sun X N, Liu S T. Effect of Z-pins distribution on mode I delamination toughness of Z-pinned laminated double cantilever beam specimens[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 160-166 (in Chinese). 孙先念, 刘书田. Z-pins几何分布对其增强复合材料双悬臂梁Ⅰ型层间韧性的影响[J]. 复合材料学报, 2007, 24(3): 160-166.
[8] Cartié D D R, Troulis M, Partridge I K. Delamination of Z-pinned carbon fibre reinforced laminates[J]. Composites Science and Technology, 2006, 66(6): 855-861.
[9] Dai S C, Yan W, Liu H Y, et al. Experimental study on z-pin bridging law by pullout test[J]. Composites Science and Technology, 2004, 64(16): 2451-2457.
[10] Li Y, Xiao J, Tan Y G, et al. Study on compressive properties of X-cor sandwich structures[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 557-561 (in Chinese). 李勇, 肖军, 谭永刚, 等. X-cor夹层结构压缩性能研究[J]. 航空学报, 2009, 30(3): 557-561.
[11] Hao J J, Zhang Z G, Zhang L, et al. Effects of Z-pin inserting parameters on X-Cor sandwich mechanical property[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 763-768 (in Chinese). 郝继军, 张佐光, 张蕾, 等. Z-pin植入参数对X-Cor夹层复合材料力学性能的影响[J]. 航空学报, 2008, 29(3): 763-768.
[12] Huang T, Jiao G Q, Du L. Experimental study on X-cor reinforced foam core sandwich[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1542-1549 (in Chinese). 黄涛, 矫桂琼, 杜龙. X-cor增强泡沫夹层结构力学性能试验[J]. 航空学报, 2008, 29(6): 1542-1549.
[13] Koh T M, Isa M D, Chang P, et al. Improving the structural properties and damage tolerance of bonded composite joints using z-pins[J]. Journal of Composite Materials, 2012, 46(26): 3255-3265.
[14] Chang P, Mouritz A P, Cox B N. Elevated temperature properties of pinned composite lap joints[J]. Journal of Composite Materials, 2008, 42(8): 741-769.
[15] Nanayakkara A M, Feih S, Mouritz A P. Improving the fracture resistance of sandwich composite T-joints by z-pinning[J]. Composite Structures, 2013, 96(1): 207-215.
[16] Li C H, Yan Y. Modeling and analysis of z-pin reinforcing in through-thickness direction of composite T-joint[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 152-157 (in Chinese). 李成虎, 燕瑛. Z-pin增强复合材料T型接头层间性能的建模与分析[J]. 复合材料学报, 2010, 27(6): 152-157.
[17] Dong X Y, Li Y, Zhang X Y, et al. Performance of polymer composite single lap joints reinforced by Z-pin[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1302-1310 (in Chinese). 董晓阳, 李勇, 张向阳, 等. Z-pin增强树脂基复合材料单搭接连接性能[J]. 航空学报, 2014, 35(5): 1302-1310.
[18] Wang X X, Chen L. Experimental study on pullout strength of Z-pins[J]. Journal of Materials Engineering, 2011, 11(1): 1-4 (in Chinese). 王晓旭, 陈利. Z-pin的拔出强度试验研究[J]. 材料工程, 2011, 11(1): 1-4.
[19] Vazquez J T, Castanié B, Barrau J J, et al. Multi-level analysis of low-cost Z-pinned composite joints: Part 1: Single Z-pin behavior[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 2070-2081.
[20] Shang W. Research on the influence of Z-pin's curing degree on the properties of composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). 尚伟. Z-pin固化度对复合材料力学性能影响的研究[D]. 南京:南京航空航天大学, 2012.
[21] Yue C Y, Looi H C. Factors which influence the reliability of the assessment of interfacial bonding in fibrous composites using the pull-out test[J]. International Journal of Adhesion and Adhesives, 2001, 21(4): 309-323.
[22] Chang P, Mouritz A P, Cox B N. Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(10): 1501-1513.
[23] Chang P, Mouritz A P, Cox B N. Flexural properties of z-pinned laminates[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 244-251.
[24] Mouritz A P. Delamination properties of z-pinned composites in hot-wet environment[J]. Composites Part A: Applied Science and Manufacturing, 2013, 52(1): 134-142.
[25] Song M C, Sankar B V, Subhash G, et al. Analysis of mode I delamination Z-pinned composites using a non-dimensional analytical model[J]. Composites Part B: Engineering, 2012, 43(4): 1776-1784.
[26] Park Y B, Lee B H, Kweon J H, et al. The strength of composite bonded T-joints transversely reinforced by carbon pins[J]. Composite Structures, 2012, 94(2): 625-634.
[27] Sweeting R D, Thomson R S. The effect of thermal mismatch on Z-pinned laminated composite structures[J]. Composite Structures, 2004, 66(1-4): 189-195.
[28] Li C H, Yan Y, Wang P, et al. Study on compressive properties of Z-pinned laminates in RTD and hygrothermal environment[J]. Chinese Journal of Aeronautics, 2012, 25(1): 64-70.
文章导航

/