固体力学与飞行器总体设计

飞机封闭腔室减重降噪优化方法

  • 杨君坦 ,
  • 李云龙 ,
  • 王晓军 ,
  • 邱志平
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
杨君坦 男,硕士研究生。主要研究方向:计算力学,不确定性力学问题。E-mail:yangjuntan@126.com;李云龙 男,博士研究生。主要研究方向:结构动力学,结构可靠性,不确定性力学问题。E-mail:lylsdust@163.com;王晓军 男,博士,教授,博士生导师。主要研究方向:计算力学,结构可靠性,力学反问题,不确定性力学问题,结构动力学。Tel:010-82313658 E-mail:XJWang@buaa.edu.cn;邱志平 男,博士,教授,博士生导师。主要研究方向:计算固体力学,有限元分析和数值解法,力学中的非线性问题,凸模型理论及其结构可靠性问题,力学中的不确定问题等。Tel:010-82339628 E-mail:zpqiu@buaa.edu.cn

收稿日期: 2013-12-30

  修回日期: 2014-05-19

  网络出版日期: 2014-06-06

基金资助

国家自然科学基金(11002013,11372025);国防基础科研项目(B2120110011);高等学校学科创新引智计划(B07009)

An Optimization Approach for Mass Reduction and Noise Dampening of Aircraft Closed Chamber

  • YANG Juntan ,
  • LI Yunlong ,
  • WANG Xiaojun ,
  • QIU Zhiping
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2013-12-30

  Revised date: 2014-05-19

  Online published: 2014-06-06

Supported by

National Natural Science Foundation of China (11002013, 11372025); National Defense Basic Research Program (B2120110011); "111" Project (B07009)

摘要

噪声水平是现代飞机封闭腔室设计的重要指标,设计中单纯地对壁板进行加肋处理虽能显著降低噪声但会大大增加结构质量,为此对由封闭腔室构成的结构-声耦合系统进行了减重降噪优化研究。基于结构-声耦合有限元模型,利用有限元软件ACTRAN计算了频谱加载时舱内的声压响应。通过试验对简化处理及数值计算进行了验证,并修正了相关模型参数。为了降低结构质量,以加强肋为边界对舱门壁板进行了分区,通过对各个区域壁板厚度及肋条截面积的优化设计,使系统动刚度分配更趋合理,降低了声辐射能量以及结构-声腔的耦合性,从而实现了在满足噪声约束条件下减轻结构质量的目标。本文的工作对实际工程中由加肋壁板所构成的类似结构的减重降噪设计有着较好的工程指导价值。

本文引用格式

杨君坦 , 李云龙 , 王晓军 , 邱志平 . 飞机封闭腔室减重降噪优化方法[J]. 航空学报, 2014 , 35(9) : 2491 -2499 . DOI: 10.7527/S1000-6893.2014.0103

Abstract

Noise level is an important index in closed chamber's design of modern aircraft; by using stiffeners traditional design can reduce noise effectively but results in much heavier structures. Thus, an optimization approach of the structural-acoustic coupling system composed of an aircraft equipment bay is studied aimed at mass reduction under noise constraint. A structural-acoustic coupling finite element model is created; by using the finite element software ACTRAN, the acoustic field in the equipment bay can be calculated, which is then verified and amended by experiments. To reduce structure mass of the equipment bay, the cabin door panel is divided into several areas with internal stiffeners as their boundaries. By conducting the optimization of stiffener sections and the thickness of each area, the total mass of the structure drops substantially. Accordingly, the dynamic stiffness of the structure is better distributed, which reduces the acoustic radiation energy and ultimately reduces the noise within the closed chamber. The work of this paper has important guiding significance in practical engineering, especially in similar structural-acoustic coupling system enclosed by thin plate with stiffeners.

参考文献

[1] Li Y, Wang X, Zhang D. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2): 249-260.

[2] Wu J H, Chen H L. A method to predict acoustic radiation from an enclosed multicavity structure[J]. Journal of Sound and Vibration, 2002, 249(3): 417-427.

[3] Nefske D J, Wolf J A, Jr, Howell L J. Structural-acoustic finite element analysis of the automobile passenger compartment: a review of current practice[J]. Journal of Sound and Vibration, 1982, 80(2): 247-266.

[4] Ying H Q. Modern vibration and noise technology:Vol. 8[M]. Beijing: Aviation Industry Press, 2012: 227-232. (in Chinese) 应怀樵. 现代振动与噪声技术: 第8卷[M]. 北京: 航空工业出版社, 2012: 227-232.

[5] Le Moyne S, Tebec J L, Tawfiq I. Acoustical influence of stiffeners on acoustic radiation of plates[J]. Mechanical Systems and Signal Processing, 2005, 19(1): 195-212.

[6] Zhu D C, Xing Y F, Cheng W, et al. Engineering vibration[M]. Beijing: Beihang University Press, 2004: 3-36. (in Chinese) 诸德超, 邢誉峰, 程伟, 等. 工程振动基础[M]. 北京: 北京航空航天大学出版社, 2004: 3-36.

[7] Luo J, Gea H C. Optimal stiffener design for interior sound reduction using a topology optimization based approach[J]. Journal of Vibration and Acoustics, 2003, 125(3): 267-273.

[8] Lamancusa J S. Geometric optimization of internal combustion engine induction systems for minimum noise transmission[J]. Journal of Sound and Vibration, 1988, 127(2): 303-318.

[9] Zhang J, Zhao W Z, Zhang W Y. Optimum weight design of plate with acoustic pressure restrict for coupled acoustic-structure systems[J]. Chinese Journal of Applied Mechanics, 2006, 23(4): 568-571. (in Chinese) 张军, 兆文忠, 张维英. 声场-结构耦合系统声压约束下板重量优化设计研究[J]. 应用力学学报, 2006, 23(4): 568-571.

[10] Zhang J. Research on acoustic-structure sensitivity and structure-acoustic optimization design. Dalian: Dalian Jiaotong University, 2006. (in Chinese) 张军. 声学-结构灵敏度及结构-声学优化设计研究. 大连: 大连交通大学, 2006.

[11] Tinnsten M. Optimization of acoustic response—a numerical and experimental comparison[J]. Structural and Multidisciplinary Optimization, 2000, 19(2): 122-129.

[12] Marburg S, Beer H J, Gier J, et al. Experimental verification of structural-acoustic modelling and design optimization[J]. Journal of Sound and Vibration, 2002, 252(4): 591-615.

[13] Jha S K, Prode T. Origin of low frequency noise in motor cars[C]//Proceedings of the 14th FISITA Conference, 1972: 46-55

[14] Krog L, Tucker A, Kemp M, et al. Topology optimization of aircraft wing box ribs[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004: 1-11.

[15] Lamancusa J S. Numerical optimization techniques for structural-acoustic design of rectangular panels[J]. Computers & Structures, 1993, 48(4): 661-675.

[16] Denli H, Sun J Q. Structural-acoustic optimization of sandwich cylindrical shells for minimum interior sound transmission[J]. Journal of Sound and Vibration, 2008, 316(1): 32-49.

[17] Wang S, Lee J. Acoustic design sensitivity analysis and optimization for reduced exterior noise[J]. AIAA Journal, 2001, 39(4): 574-580.

文章导航

/