固体力学与飞行器总体设计

平稳随机载荷历程下的疲劳裂纹扩展规律预测

  • 白鑫 ,
  • 谢里阳
展开
  • 东北大学 机械工程与自动化学院 现代设计与分析研究所, 辽宁 沈阳 110819
白鑫 男,博士研究生。主要研究方向:机械装备疲劳强度与可靠性。Tel:024-83678622 E-mail:neu.baixin@gmail.com;谢里阳 男,博士,教授,博士生导师。主要研究方向:机械装备疲劳强度与可靠性。Tel:024-83673915 E-mail:lyxie@me.neu.edu.cn

收稿日期: 2013-11-08

  修回日期: 2014-05-09

  网络出版日期: 2014-06-06

基金资助

国家自然科学基金(51335003,51175072)

Fatigue Crack Growth Law Prediction Based on Steady Random Load

  • BAI Xin ,
  • XIE Liyang
Expand
  • Institute of Modern Design and Analysis, College of Mechanical Engeering & Automation, Northeastern University, Shenyang 110819, China

Received date: 2013-11-08

  Revised date: 2014-05-09

  Online published: 2014-06-06

Supported by

National Natural Science Foundation of China (51335003, 51175072)

摘要

工程中多数裂纹构件的受载是随机的,为了更合理、更准确地预测出服役裂纹构件的剩余寿命,针对裂纹构件承受平稳随机载荷且载荷历程的具体特征、载荷水平及载荷作用频度未知的情况,提出了一种预测疲劳裂纹扩展寿命的新方法。该方法根据一段时间对裂纹扩展情况的跟踪观测,推断裂纹扩展规律,实现疲劳裂纹扩展剩余寿命预测。根据应力大小与载荷作用频度是否均已知,将该方法分为两阶段观测法与单阶段观测法。结合一个具体的工程案例,详细阐述了该方法的应用,且验证了其可行性。所提出的方法应用方便、操作简单,可作为工程中预测疲劳裂纹剩余寿命的一种依据。

本文引用格式

白鑫 , 谢里阳 . 平稳随机载荷历程下的疲劳裂纹扩展规律预测[J]. 航空学报, 2014 , 35(9) : 2500 -2505 . DOI: 10.7527/S1000-6893.2014.0099

Abstract

Most of the work load of crack components are random, in order to predict more reasonable and more accurate remaining life of crack components, a new method for predicting fatigue crack propagation life is proposed based on the situation that crack components are subjected to steady random load and without knowing the load history, the load level and the load frequency. This method can predict the crack growth law and evaluate the residual fatigue life of crack components by tracking and observing crack propagation. In addition, according to whether the load frequency or the load level is known, the method can be divided into two-stage observation method and one-stage observation method. Besides, this method is expressed and verified in details by a illustrative project example. And this method is proved to be much more convenient and easy to predict the remaining useful life of a crack component in engineering.

参考文献

[1] Borrego L P, Ferreira J M, Pinho da Cruz J M, et al. Evaluation of overload effects on fatigue crack growth and closure[J]. Engineering Fracture Mechanics, 2003, 70(11): 1379-1397.

[2] Xu H. Probability fatigue[M]. Shenyang: Northeastern University Press, 1994: 382-443. (in Chinese). 徐灏. 概率疲劳[M]. 沈阳: 东北大学出版社, 1994: 382-443.

[3] Tunna J M. Random load fatigue: theory and experiment[J]. Journal of Mechanical Engineering Science, 1985, 199(3): 249-257.

[4] Leybold H A, Naumann E C. A study of fatigue life under random loading[C]//Proceedings of American Society for Testing Materials, 1963: 717.

[5] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): 159-164.

[6] Von Euw E F J, Hertzberg R W, Roberts R. Delay effects in fatigue crack propagation[J]. ASTM STP, 1972, 513: 230-259.

[7] Jones R E. Fatigue crack growth retardation after single-cycle peak overload in Ti-6Al-4V titanium alloy[J]. Engineering Fracture Mechanics, 1973, 5(3): 585-604.

[8] Matsuoka S, Tanaka K. Delayed retardation phenomena of fatigue crack growth in various steels and alloys[J]. Journal of Materials Science, 1978, 13(6): 1335-1353.

[9] Wheeler O E. Spectrum loading and crack growth[J]. Journal of Fluids Engineering, 1972, 94(1): 181-186.

[10] Miles J W. On structural fatigue under random loading[J]. Journal of the Aeronautical Sciences, 1954, 21(11): 753-762.

[11] Arone R. Fatigue crack growth under stationary random load[J]. Engineering Fracture Mechanics, 1991, 39(5): 895-903.

[12] Sankararaman S, Ling Y, Mahadevan S. Uncertainty quantification and model validation of fatigue crack growth prediction[J]. Engineering Fracture Mechanics, 2011, 78(7): 1487-1504.

[13] Zárate B A, Caicedo J M, Yu J, et al. Bayesian model updating and prognosis of fatigue crack growth[J]. Engineering Structures, 2012, 45: 53-61.

[14] Yuan S F, Zhang H, Qiu L, et al. A fatigue crack growth prediction method based on particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1114-1121. (in Chinese). 袁慎芳, 张华, 邱雷, 等. 基于粒子滤波算法的疲劳裂纹扩展预测方法[J]. 航空学报, 2013, 34(5): 1114-1121.

[15] Xie L Y. Basic theory and method of mechanical reliability[M]. 2nd ed. Beijing: Science Press, 2012: 120-129. (in Chinese). 谢里阳. 机械可靠性基本理论与方法[M]. 2nd ed. 北京: 科学出版社, 2012: 120-129.

[16] ASTM E647. Standard test method for fatigue crack growth rates of metallic materials[S]. Philadelphia: ASTM, 1995: 1-49.

[17] China National Standards Committee. GB/T 6398—2000 Standard test method for fatigue crack growth rates of metallic materials[S]. Beijing: China National Standards Committee, 2000. (in Chinese). 中国国家标准委员会. GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法[S]. 北京:中国国家标准委员会, 2000.

[18] Nestor P. fracture mechanics[M]. Netherlands: Kluwer Academic Publishers, 2004: 39-72.

[19] Wang Z T. Aluminum alloy and its processing handbook[M]. 3rd ed. Changsha: Center South University Press, 2004: 1370-1380. (in Chinese). 王祝堂. 铝合金及其加工手册[M]. 3rd ed. 长沙: 中南大学出版社, 2004: 1370-1380.

[20] Hudson C M, Scardina J T. Effect of stress ratio on fatigue-crack growth in 7075-T6 aluminum-alloy sheet[J]. Engineering Fracture Mechanics, 1969, 1(3): 429-446.

文章导航

/