流体力学与飞行力学

基于CFD技术的高效叶栅耦合颤振分析方法

  • 苏丹 ,
  • 张伟伟 ,
  • 全金楼 ,
  • 马明生 ,
  • 叶正寅
展开
  • 1. 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 四川 绵阳 621000
苏丹 男, 博士研究生.主要研究方向: 叶轮机气动弹性分析. Tel: 029-88481342 E-mail: sudan616@126.com

收稿日期: 2014-01-08

  修回日期: 2014-04-24

  网络出版日期: 2014-06-03

基金资助

国家自然科学基金(11172237)

An Efficient Coupled Method of Cascade Flutter Analysis by Using CFD Technique

  • SU Dan ,
  • ZHANG Weiwei ,
  • QUAN Jinlou ,
  • MA Mingsheng ,
  • YE Zhengyin
Expand
  • 1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-01-08

  Revised date: 2014-04-24

  Online published: 2014-06-03

Supported by

National Natural Science Foundation of China (11172237)

摘要

为了考虑叶轮机叶片结构与流体之间的耦合效应,同时提高叶轮机颤振数值研究的效率,发展了一种基于非定常气动力降阶模型(ROM)的叶栅耦合颤振分析方法.该方法运用时域计算流体力学(CFD)技术计算少数几个叶片的非定常气动力,通过系统辨识及一些假设构建整个叶栅振动的非定常气动力降阶模型,并在状态空间耦合叶栅结构动力学方程建立叶栅气动弹性方程,采用特征值和时域仿真分析该系统稳定性.运用该降阶耦合方法对STCF4(Standard Test Configuration 4)以及NASA Rotor67叶栅系统的稳定性进行了计算.通过与直接计算流体力学/计算结构动力学(CFD/CSD)耦合方法和非耦合方法计算结果的比较验证了该方法的准确性,且该降价耦合方法的计算效率相对于直接CFD/CSD耦合方法提高了1~2个量级,为叶轮机气动弹性参数研究、失谐研究以及多模态耦合计算等提供了便利.

本文引用格式

苏丹 , 张伟伟 , 全金楼 , 马明生 , 叶正寅 . 基于CFD技术的高效叶栅耦合颤振分析方法[J]. 航空学报, 2014 , 35(12) : 3232 -3243 . DOI: 10.7527/S1000-6893.2014.077

Abstract

As direct numerical simulation of fluid/structure interaction of entire blade row is computation-intensive and time-consuming, this paper presents a reduced order model (ROM)-based coupling method which takes fluid/structure coupling effect into account and provides a significant increase in efficiency of flutter analysis of turbomachinery. This method computes unsteady aerodynamic forces of several blades in time domain by computational fluid dynamics (CFD) technique, and then constructs the reduced order aerodynamic model of entire vibrating cascade with system identification and several assumptions. And finally, this method establishes the aeroelastic model of entire cascade by coupling the reduced order aerodynamic mode with cascade structural dynamic equation in state-space form. Flutter characteristics of STCF4 (Standard Test Configuration 4) and NASA Rotor67 cascade are analyzed by solving eigenvalues of the aeroelastic model. The accuracy of this method is validated by comparing the results of direct computational fluid dynamics/computational structural dynamics (CFD/CSD) coupling method and uncoupled method. The ROM-based coupling method improves computational efficiency by nearly two orders of magnitude compared to direct CFD/CSD coupling method. Besides, this method provides an effective and reliable approach for parameter analysis, mistuning and multi-mode coupling calculation of turbomachinery.

参考文献

[1] Whitehead D S. Force and moment coefficients for vibrating aerofoils in cascade, ARC R. & M. 3254[R]. London: Her Majesty's Stationery Office, 1962.

[2] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.

[3] Ji S, Liu F. Flutter computation of turbomachinery cascades using a parallel unsteady Navier-Stokes code[J]. AIAA Journal, 1999, 37(3): 320-327.

[4] Zhang Z, Hou A P, Tuo W, et al. A review of numerical research on aeroelastic dynamical response of aero-engine blades[J]. Advances in Mechanics, 2012, 42(5): 572-582. (in Chinese) 张章, 侯安平, 脱伟, 等. 航空发动机叶片气动弹性动力响应的数值方法研究进展[J]. 力学进展, 2012, 42(5): 572-582.

[5] Marshall J G, Imregun M. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures, 1996, 10(3): 237-267.

[6] Carta F O. Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors[J]. Journal of Engineering for Power, 1967, 89(3): 419-426.

[7] Zhen Y, Yang H. Full assembly fluid/structured flutter analysis of a transonic fan[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 626-630. (in Chinese) 郑赟, 杨慧. 跨音速风扇全环叶片颤振特性的流固耦合分析[J]. 北京航空航天大学学报, 2013, 39(5): 626-630.

[8] Lane F. System mode shapes in the flutter of compressor blade rows[J]. Journal of the Aeronautical Sciences, 1956, 23: 54-66.

[9] Bendiksen O, Friedmann P. Coupled bending-torsion flutter in cascades[J]. AIAA Journal, 1980, 18(2): 194-201.

[10] Tao H L, Zhu Y L, Guo B T, et al. Numerical simulation of aeroelastic response in compressor based on fluid-structure coupling[J]. Journal of Aerospace Power, 2012, 27(5): 1054-1060. (in Chinese) 陶海亮, 朱阳历, 郭宝亭, 等. 压气机叶片流固耦合数值计算[J]. 航空动力学报, 2012, 27(5): 1054-1060.

[11] Rzadkowski R, Gnesin V. 3-D inviscid self-excited vibrations of a blade row in the last stage turbine[J]. Journal of Fluids and Structures, 2007, 23(6): 858-873.

[12] Im H, Chen X Y, Zha G. Detached eddy simulation of transonic rotor stall flutter using a fully coupled fluid-structure interaction[C]//Proceedings of ASME Turbo Expo 2011. Vancouver, British Columbia, Canada: ASME, 2011.

[13] Vahdati M, Simpson G, Imregun M. Mechanisms for wide-chord fan blade flutter[J]. Journal of Turbomachinery, 2011, 133(1): 1-7.

[14] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled metheds[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.

[15] Vahdati M, Sayma A I, Imregun M, et al. Multibladerow forced response modeling in axial-flow core compressors[J]. Journal of Turbomachinery, 2007, 129(2): 412-420.

[16] Lai K L, Tsai H M. Flutter simulation and prediction with CFD-based reduced-order model, AIAA-2007-0731[R]. Reston: AIAA, 2007.

[17] Zhang W W, Wang B, Ye Z, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.

[18] Gennaretti M, Muro D. Multiblade reduced-order aerodynamics for state-space aeroelastic modeling of rotors[J]. Journal of Aircraft, 2012, 49(2): 495-502.

[19] Willcox K, Peraire J, White J. An arnoldi approach for generation of reduced-order models for turbomachinery[J]. Computer & Fluid, 2002, 31: 369-389.

[20] Tran D M. Multi-parameter aerodynamic modeling for aeroelastic coupling in turbomachinery[J]. Journal of Fluids and Structures, 2009, 25(3): 519-534.

[21] Raveh D E. Identification of computational-fluid-dynamics based unsteady aerodynamic models for aeroelastic analysis[J]. Journal of Aircraft, 2004, 41(3): 620-632.

[22] Zhang W, Ye Z. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Astronautica, 2010, 66 (7-8): 999-1007.

[23] Su D, Zhang W W, Zhang C A, et al. An unsteady aerodynamic modeling for torbomachinery based on system identification[J]. Acta Aeronautica et Astronaautica Sinica, 2012, 33(2): 242-248. (in Chinese) 苏丹, 张伟伟, 张陈安, 等. 基于系统辨识技术的叶轮机非定常气动力建模方法[J]. 航空学报, 2012, 33(2): 242-248.

[24] Kim T. System identification for coupled fluid-structures: Aerodynamics is aeroelasticity minus structure[J]. AIAA Journal, 2011, 49(3): 503-511.

[25] Hizir N B, Phan M Q, Betti R. Identification of discrete-time bilinear systems through equivalent linear models[J]. Nonlinear Dynamics, 2012, 69(4): 2065-2078.

[26] Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. Transactions on Automatic Control, 1981, 26(1): 17-32.

[27] Tran D M. Component mode synthesis method using partial interface modes. Application to tuned and mistuned bladed disk with local non-linearity, DETC2009-87353[R]. San Diego, California, USA: ASME, 2009

[28] Bai B, Bai G C, Tong X C, et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power, 2014, 29(1): 91-103. (in Chinese) 白斌, 白广忱, 童晓晨, 等. 整体叶盘结构失谐振动的国内外研究状况[J]. 航空动力学报, 2014,29(1): 91-103.

[29] Zhang W, Jiang Y, Ye Z. Two better loosely coupled solution algorithms of CFD based aeroelastic simulation[J]. Engineering Applications of Computational Fluid Mechanics, 2007, 1(4): 253-262.

[30] Bōlcs A, Fransson T H. Aeroelasticity in turbomachines—comparison of theoretical and experimental cascade results[M]. Lausanne, Switzerland: Communication du Laboratoire de Thermique Appliquée et de Turbomachines N°13 l'Ecole Polytechnique Fédérale de Lausanne, 1986: 1-221.

[31] Quan J L, Zhang W W, Su D, et al. Flutter analysis of turbomachery cascades based on coupled CFD/CSD method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2019-2028. (in Chinese) 全金楼, 张伟伟, 苏丹, 等. 基于CFD/CSD时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013, 34(19): 2019-2028.

[32] Strazisar A J, Wood J R, Hathaway M D, et al. Laser anemometer measurements in a transonic axial-flow fan rotor, NASA Technical Paper 2879[R]. Washington, D.C.: NASA, 1989.

文章导航

/