流体力学与飞行力学

梯形翼高升力构型的数值模拟技术

  • 王运涛 ,
  • 李松 ,
  • 孟德虹 ,
  • 李伟
展开
  • 中国空气动力研究与发展中心 计算空气动力学研究所, 四川 绵阳 621000
李松 男, 博士研究生, 助理工程师.主要研究方向: 计算空气动力学. Tel: 0816-7067915 E-mail: lisonic@foxmail.com;孟德虹 男, 硕士, 助理研究员.主要研究方向: 计算空气动力学. Tel: 0816-2463062 E-mail: mdh157@163.com;李伟 男, 硕士, 研究实习员.主要研究方向: 计算空气动力学. Tel: 0816-2463062 E-mail: kuaileo6@163.com

收稿日期: 2014-02-24

  修回日期: 2014-05-06

  网络出版日期: 2014-05-28

基金资助

国家重点基础研究发展计划(2014CB744803)

Numerical Simulation Technology of High Lift Trapezoidal Wing Configuration

  • WANG Yuntao ,
  • LI Song ,
  • MENG Dehong ,
  • LI Wei
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-02-24

  Revised date: 2014-05-06

  Online published: 2014-05-28

Supported by

Key Basic Research Program of China (2014CB744803)

摘要

基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用亚跨超声速平台(TRIP3.0),数值模拟了美国国家航空航天局(NASA)梯形翼构型.研究了控制方程、网格密度、流动转捩和初始条件等不同影响因素对气动特性的影响.风洞试验是2002年在NASA Langley 14 ft22 ft亚声速风洞中完成的,试验结果包括了基本气动力和力矩、表面压力系数和边界层速度型分布.计算结果与试验数据的比较表明:求解完全的RANS方程,提高了翼梢涡的模拟精度;网格密度主要影响翼梢涡的强度;转捩模型提高了边界层的模拟精度,进而提高了升力系数、俯仰力矩系数的模拟精度;最大升力系数及失速迎角对初始条件具有依赖性.

本文引用格式

王运涛 , 李松 , 孟德虹 , 李伟 . 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014 , 35(12) : 3213 -3221 . DOI: 10.7527/S1000-6893.2014.0095

Abstract

Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, the National Aeronautics and Space Administration(NASA) high lift trapezoidal wing (Trap wing) model is simulated using TRIsonic Platform version 3.0(TRIP3.0). The influence of various factors on aerodynamic characteristics is studied, which include control equations, grid density, flow transition and initial condition. The corresponding wind tunnel experiment is conducted in the NASA Langley 14 ft22 ft subsonic wind tunnel in 2002; the experimental data includes basic force and moment, surface pressure data and velocity distribution in the boundary layer. Compared with the experimental data, the numerical results illustrate that solving the full RANS equations provides better numerical accuracy to the tip vortex; the grid density mainly affects the intensity of the wing tip vortex, better accuracy in the boundary layer with transition model results in better lift and pitch moment coefficients and the maximum lift coefficient and stall angle depend on the initial flow conditions.

参考文献

[1] Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180.

[2] Zhu Z Q, Chen Y C, Wu Z C. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 257-262. (in Chinese) 朱自强, 陈迎春, 吴宗成. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3): 257-262.

[3] Zhang W S, Chen H X, Zhang Y F,et al. Nacelle strake's aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85. (in Chinese) 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.

[4] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of airfoil with gurney flaps under high subsonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2277-2286. (in Chinese) 崔钊, 韩东, 李建波. 翼型加装格尼襟翼的高亚声速气动特性研究[J]. 航空学报, 2013, 34(10): 2277-2286.

[5] Rogers S E, Roth K, Nash S M. CFD validation of high-lift flows with significant wind-tunnel effects, AIAA-2000-4218[R]. Reston: AIAA, 2000.

[6] van der Burg J W, von Geyr H F, Heinrich R, et al. Geometrical model installation and deformation effects in the European project EUROLIFT II, AIAA-2007-4297[R]. Reston: AIAA, 2007.

[7] Heinz H. Overview about the European high lift research programme EUROLIFT, AIAA-2004-0767[R]. Reston: AIAA, 2004.

[8] Rudnik R, von Geyr H F. The European high lift project EUROLIFT II-objectives, approach, and structure, AIAA-2007-4296[R]. Reston: AIAA, 2007.

[9] Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0862[R]. Reston: AIAA, 2011.

[10] Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0939[R]. Reston: AIAA, 2011.

[11] Johnson P L, Jones K M, Madson M D. Experimental investigation of a simplified 3D high lift configuration in support of CFD validation, AIAA-2000-4217[R]. Reston: AIAA, 2000.

[12] Rogers S E, Roth K, Nash S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10): 1884-1892.

[13] van Leer B. Towards the ultimate conservative differences scheme[J]. Journal of Computational Physics, 1997, 135: 229-248.

[14] Menter F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.

[15] Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: part I-model formulation[J]. Journal of Turbomachinery, 2004, 128(3): 413-422.

[16] Zhang Y L, Wang G X, Meng D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3): 295-301. (in Chinese) 张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3): 295-301.

[17] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801. (in Chinese) 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.

[18] Sclafani A J, Slotnick J P, Vassberg J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model, AIAA-2012-2919[R]. Reston: AIAA, 2012.

文章导航

/