飞翼布局无人机微射流控制参数效能分析

  • 许晓平 ,
  • 周洲
展开
  • 1. 西北工业大学
    2. 西北工业大学无人机特种技术重点实验室

收稿日期: 2014-04-01

  修回日期: 2014-05-21

  网络出版日期: 2014-05-23

基金资助

复杂产品制造过程质量控制与诊断的理论及方法研究;无线电导航系统干扰抑制研究;全国优秀博士论文作者专项资金资助项目

The Efficiency of Micro-jet Flow Control Parameter for the Flying-wing UAV

  • XU Xiao-Ping ,
  • ZHOU Zhou
Expand

Received date: 2014-04-01

  Revised date: 2014-05-21

  Online published: 2014-05-23

摘要

开展了微射流控制参数对飞翼布局飞行器气动特性影响规律的研究。建立的流动控制模型及数值模拟技术经过了TAU0015翼型流动控制实验校核。设计了布置于飞行器前缘、1%c处的8套阵列式微射流控制方案,研究了微射流技术的气动控制效果,分析了典型流动控制参数对控制效能的影响规律。研究结果表明:微射流技术可以有效改善飞翼布局飞行器大迎角下的流动分离现象,布置于飞行器前缘、内翼段的射流激励器控制效果较优,较大的射流动量系数对流场影响较大,最优的无量纲射流频率为1。

本文引用格式

许晓平 , 周洲 . 飞翼布局无人机微射流控制参数效能分析[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2014.0100

Abstract

The control effectiveness of typical micro-jet flow control parameters on the aerodynamic performance of the flying-wing Unmanned Aerial Vehicle (UAV) was investigated by numerical simulation. Validation was conducted with TAU0015 airfoil experiment data for flow control model and numerical method. The flow control model was tested with eight array of synthetic jet actuators embedded in the leading edge and 1%c along the wing span. The change in the control effect was examined and the control efficiency of control parameters was performed. The numerical results of the UAV aerodynamic coefficients revealed lift increments over the baseline uncontrolled case as large as 25%. The actuators arranged in leading edge and inboard of UAV were found to be more effective at separation control, the larger jet momentum coefficient were more pronounced and the most effective frequency seemed to be one. Which indicate that correct control parameter is critical to the design of an efficient flow separation control scheme.

参考文献

[1] Dmitriev V G, Denisov V E, Gurevich B I, et al. The flying wing concept - chances and risks[R]. AIAA Pa-per 2003-2887, 2003.
[2] LUO Z B, XIA Z X. Advances in synthetic jet technol-ogy and application in flow control [J]. Advances in Mechanics, 2005, 35(2):221-234. (in Chinese)
罗振兵,夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234.
[3] Bewley T R. Flow control-new challenges for a new renaissance[J]. Process in Aerospace Science, 2001. 37(2001): 21-58.
[4] Amitay M, Smith D R, Kibens V, et al. Aerodynamic flow control over an unconventional airfoil usingsyn-thetic jet actuators[J]. AIAA Journal, 2001. 39(3): p. 361-370.
[5] Seifert A, Darabi A, and Wygnanski I. Delay of airfoil stall by periodic excitation[J]. Journal of Aircraft, 1996. 33(4): p. 691-698.
[6] Wygnanski I and Seifert A. The control of separation by periodic oscillations[R]. AIAA Paper 94-2608, 1994.
[7] Parekh D E, Williams S P, Amitay M, et al. Active flow control on the stingray UAV: aerodynamic forces and moments[R]. AIAA Paper 2003-4002, 2003.
[8] Amitay M, Washburn A E, Anders S G, et al. Active flow control on the stingray UAV: transient behavior[R]. AIAA Paper 2003-4001, 2003.
[9] Washburn A E and Amitay M. Active flow control on the stingray UAV: physical mechanisms[R]. AIAA Pa-per 2004-745, 2004.
[10] Kondor S, Parekh D E, Washburn A E, et al. Investiga-tions of synthetic jet aerodynamic control modulation on a full-scale UAV[R]. AIAA Paper 2005-1051, 2005.
[11]
[12] Mahmood G M and Smith D R. Proportional aerody-namic control of a UAV wing model using synthetic jets[R]. AIAA Paper 2007-3851, 2007.
[13] Yazzie R, Truman C R, and Salari K. Prediction of os-cillatory flow excitation at the leading edge of a mod-ified NACA 0015 airfoil[R]. AIAA Paper 2004-749, 2004.
[14] Joslin R D and Viken S A. Aerodynamic performance of an active flow control configuration using unstructured-grid RANS[R]. AIAA Paper 2001-16161, 2001.
[15] Farnsworth J A N, Vaccaro J C, and Amitay M. Aerody-namic performance modification of the stingray UAV at low angles of attack[R]. AIAA Paper 2007-4426, 2007.
[16] Seifert A, David S, Fono I, et al. Roll control via active flow control: from concept to flight[J]. Journal of Air-craft, 2010. 47(3): p. 864-874.
[17] Greenblatt D and Wygnanski I. Control of separation by periodic oscillations[J]. Process in Aerospace Science, 2000. 37(7): p. 487-545.
文章导航

/