电子与控制

基于模糊机会约束规划的机会阵雷达方向图综合

  • 龚树凤 ,
  • 贲德 ,
  • 潘明海 ,
  • 龙伟军
展开
  • 1. 南京航空航天大学 雷达成像与微波光子技术教育部重点实验室, 江苏 南京 210016;
    2. 南京电子技术研究所, 江苏 南京 210038
龚树凤 女,博士研究生。主要研究方向:新体制雷达,阵列信号处理,雷达信号处理。E-mail:suffy_nuaa@163.com;贲德 男,中国工程院院士,教授,博士生导师。主要研究方向:新体制雷达,雷达系统设计开发,雷达信号处理;潘明海 男,博士,教授,博士生导师。主要研究方向:射频仿真技术,新体制雷达,雷达信号处理。Tel:025-84896490 E-mail:panmh@nuaa.edu.cn

收稿日期: 2013-12-12

  修回日期: 2014-05-08

  网络出版日期: 2014-05-16

基金资助

国家自然科学基金(61071164,61271327);江苏优势高校学科建设工程

Pattern Synthesis for Opportunistic Array Radar Based on Fuzzy Chance-constrained Programming

  • GONG Shufeng ,
  • BEN De ,
  • PAN Minghai ,
  • LONG Weijun
Expand
  • 1. Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Nanjing Research Institute of Electronics Technology, Nanjing 210038, China

Received date: 2013-12-12

  Revised date: 2014-05-08

  Online published: 2014-05-16

Supported by

National Natural Science Foundation of China (61071164, 61271327); Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

针对机会阵雷达方向图综合的不确定问题,提出了一种基于模糊机会约束规划的方向图综合规划模型。该模型基于可信性理论,综合考虑天线单元分布的随机性以及激励状态的不确定性,将参与方向图综合时激励打开的天线数目看做一个梯形模糊变量,用以描述综合时的复杂不确定环境。随后,将规划模型转化为清晰等价形式,再结合遗传算法和灰关联综合评价法则设计了一种混合智能优化算法,用于求解该模型。以一维任意非均匀线阵为例,对主瓣宽度和最大副瓣电平进行了优化。仿真表明:优化后结果的可信性高于置信水平,验证了该算法的有效性。

本文引用格式

龚树凤 , 贲德 , 潘明海 , 龙伟军 . 基于模糊机会约束规划的机会阵雷达方向图综合[J]. 航空学报, 2014 , 35(9) : 2615 -2623 . DOI: 10.7527/S1000-6893.2014.0096

Abstract

A new pattern synthesis model based on fuzzy chance-constrained programming is presented, which can be used to solve the uncertain problem of pattern synthesis for opportunistic array radar. The model bases on credibility theory, takes fully into account antenna elements with random distribution and excited state of uncertainty, uses the trapezoidal fuzzy variable to describe the number of the working antenna elements and characterize the complex and uncertain environment. Then, the programming model is transformed into a crisp equivalent forms, and a hybrid intelligent optimization algorithm is designed to solve the programming model, which is combined with genetic algorithms and grey relational comprehensive evaluation. And a uniform one-dimensional array is synthesized with this model, and the main lobe width and maximum side-lobe level are optimized. Simulation results show that the credibility of optimized results is higher than the confidence level, which verify the effectiveness of the model.

参考文献

[1] Jon A B. Genetic algorithms as a tool for opportunistic phased array radar design[D]. Monterey: Naval Postgraduate School, 2002.

[2] Lance C E. Genetic algorithm design and testing of a random element 3-D 2.4 GHz phased array transmit antenna constructed of commercial RF microchips[D]. Monterey: Naval Postgraduate School, 2003.

[3] Ibrahim K. Distributed beam forming in a swarm UAV network[D]. Monterey: Naval Postgraduate School, 2008.

[4] Long W J, Ben D, Pan M H. Opportunistic digital array radar and its technical characteristic analysis[C]//IET International Radar Conference, 2009: 724-727.

[5] Long W J, Ben D, Pan M H. Pattern synthesis for OAR using LSFE-GA method[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2011, 21(5): 584-588.

[6] Gong S F, Long W J, Huang H, et al. Polyphase orthogonal sequences design for opportunistic array radar via HGA[J]. Journal of Systems Engineering and Electronics, 2013, 24(1): 60-67.

[7] Ling C, Zhu L Y, Wee S. Linear aperiodic array synthesis using an improved genetic algorithm[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 895-892.

[8] Wang W B, Feng Q Y, Liu D. Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays[J]. Progress in Electromagnetics Research, 2011, 115: 173-189.

[9] Randy L P. Thinned arrays using genetic algorithms[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(7): 993-999.

[10] Olen C A, Compton R T. A numerical pattern synthesis algorithm for arrays[J]. IEEE Transaction on Antenna and Propagation, 1990, 38(10): 1666-1676.

[11] Zhou P Y, Ingram M A. Pattern synthesis for arbitrary arrays using an adaptive array method[J]. IEEE Transaction on Antenna and Propagation, 1998, 46(11): 1759-1760.

[12] Zhan S, Feng Z H. A new array pattern synthesis algorithm using the two-step least-squares method[J]. IEEE Signal Processing Letters, 2005, 12(3): 250-253.

[13] Yan S F, Ma Y L, Sun C. Optimal beamforming for arbitrary arrays using second-order cone programming[J]. Chinese Journal of Acoustics, 2005, 24(1): 1-9.

[14] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8: 338-353.

[15] Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1999, 100(S1): 9-34.

[16] Liu B D, Liu Y K. Expected value of fuzzy variable and fuzzy expected value models[J]. IEEE Transaction on Fuzzy Systems, 2002, 10(4): 445-450.

[17] Liu B D. Uncertainty theory: an introduction to its axiomatic foundations[M]. Berlin: Spring-Verlag, 2004: 109-128.

[18] Liu B D, Zhao R Q. Stochastic programming and fuzzy programming[M]. Beijing: Tsinghua University Press, 1998: 164-183. (in Chinese) 刘宝碇, 赵瑞清. 随机规划与模糊规划[M]. 北京: 清华大学出版社, 1998: 164-183.

[19] Liu B D. Fuzzy random chance-constrained programming[J]. IEEE Transaction on Fuzzy Systems, 2001, 9(5): 713-720.

[20] Liu B D. Fuzzy random depent-chance programming[J]. IEEE Transaction on Fuzzy Systems, 2001, 9(5): 721-726.

[21] Chen G Z, Liu X W, Xiong J. Application of fuzzy chance constrained programming in optimal distribution of radar jamming resource[J]. Modern Defence Technology, 2010, 38(6): 128-133.(in Chinese) 陈根宗, 刘湘伟, 雄杰. 模糊机会约束规划在雷达干扰资优化分配中的应用[J]. 现代防御技术, 2010, 38(6): 128-133.

[22] Wu J K, Tang L. Multi-objective stochastic scheduling models for hydrothermal plants on fuzzy chance constrained programming[J]. Proceedings of the CSEE, 2011, 31(25): 26-34.(in Chinese) 吴杰康, 唐力. 基于模糊机会约束规划的水火电力系统多目标随机调度模型[J]. 中国电机工程学报, 2011, 31(25): 26-34.

[23] Zhao T, Wang X. A fuzzy chance-constrained programming model for liquid chlorine downstream products selection problem in environmental services[C]//2011 Annual SRⅡ Global Conference, 2011: 630-635.

[24] Deng J L. The primary method of grey system theory[M]. Wuhan: Huazhong University of Science and Technology Press, 2005: 74-106.(in Chinese) 邓聚龙. 灰色系统基本方法[M]. 武汉:华中科技大学出版社, 2005: 74-106.

[25] Ke H F, Chen Y G, Xia B. An algorithm of multiple criteria decision-making based on similarity to ideal grey relational projection[J]. Acta Electronica Sinica, 2007, 35(9): 1757-1761.(in Chinese) 柯红发, 陈永光, 夏斌. 一种基于逼近于理想灰关联投影的多目标决策算法[J]. 电子学报, 2007, 35(9): 1757-1761.

[26] Tsai M S, Hsu F Y. Application of grey correlation analysis in evolutionary programming for distribut-ion system feeder reconfiguration[J]. IEEE Transactions on Power Systems, 2010, 25(2): 1126-1133.

[27] You S M, Xiong J J, Yan Q, et al. Novel grey model to evaluate aerodynamic and stealth combination property[J]. Acta Aeronautica et Astronautica Sinca, 2010, 31(7): 1338-1350.(in Chinese) 游思明. 熊峻江. 晏青, 等. 飞行器气动—隐身综合性能评估的灰关联度分析模型[J]. 航空学报, 2010, 31(7): 1338-1350.

文章导航

/